A Study of Phytosociology Characteristics of Tree Species Along an Altitudinal Gradient of Khonsa Forest Division Arunachal Pradesh, India

Kelmi Lyngdoh ${ }^{1 *}$, Pebam Rocky ${ }^{2}$, K. K. Sarma ${ }^{3}$
${ }^{1}$ Senior Research Fellow, North Eastern Space Application Centre, Umiam, Meghalaya, India
${ }^{2}$ Scientist/Engineer (SE), North Eastern Space Application Centre, Umiam, Meghalaya, India
${ }^{3}$ Scientist/Engineer (SG), North Eastern Space Application Centre, Umiam, Meghalaya, India

Abstract

The study's goal is to evaluate the phytosociology of several tree species in the Khonsa Forest Division. For the sample plots placed in the forest area underneath the research area, a random sampling design was used. For the calculation of different phyto-sociological attributes 40 identified tree species were found under $<800 \mathrm{~m}, 61$ species were found under $800-1800 \mathrm{~m}$ and 39 species were found under $>1800 \mathrm{~m}$. The total density per hectare at 800 m was 141.818 tree/hectare, $800-1800 \mathrm{~m}$ was 215.360 tree/hectare, and $>1800 \mathrm{~m}$ was 235.926 tree/hectare. The Shannon Weiner's index was $2.390,2.799$, and 2.469 at $800 \mathrm{~m}, 800 \mathrm{~m}$ to 1800 m , and $>1800 \mathrm{~m}$, respectively. At $800 \mathrm{~m}, 800-1800 \mathrm{~m}$, and 1800 m , the species evenness of the study area was $0.652,0.684$, and 0.679 respectively. The Simpson index was $\mathbf{0 . 0 2 8}, \mathbf{0 . 0 1 9}$, and 0.023 at $800 \mathrm{~m}, 800-1800 \mathrm{~m}$ and $>1800 \mathrm{~m}$ respectively. It was found that at $<800 \mathrm{~m}$ elevation, the highest IVI was in Terminalia myriocarpa (39.891) followed by Ailanthus integrifolia (30.085) and least in Artocarpus chaplasha (0.155). At elevation 800-1800m the highest IVI was in Schima wallichi (23.168) followed by Altingia excels (20.429) and least in Tetrameles nudiflora (0.127). The highest IVI at $>1800 \mathrm{~m}$ was in Magnolia champaca (28.893) followed by Schima wallichi $\mathbf{(2 7 . 4 7 9)}$) and least in Eleocarpus floribundus ($\mathbf{0} 211$).

Keywords: Phytosociology, frequency, density, Important Value Index (IVI), Shannon Weiner's index, Simpson index, species evenness index.

1. Introduction

The study of plant communities, their species relationships within them, and how they form is known as phytosociology. The goal of phytosociology is to create vegetation using an empirical model of the coefficient that describes vegetative units. To characterise the population dynamics of each plant species that exists in a specific community and to comprehend how those species interact with one another within that community, phytosociology is important (Mishra et al., 2012). Because it is frequently connected to how communities' function and their capacity for change, species variety is a crucial characteristic of communities (Stachowicz et al., 2007; Gamfeldt and Hillebrand, 2008). Diversity measures the likelihood that two randomly chosen members of a community belong to different species. Thus, richness and evenness, two additional community characteristics, have an impact on
diversity. A biologically relevant way to assess alpha diversity is species richness, which is typically stated as the number of species per sample unit (Whittaker, 1972). The degree of resemblance in a species' abundance is referred to as evenness. The objective of this study was to evaluate the phytosociological traits of trees in Khonsa Forest Division.

2. Materials and Methodology

The study was conducted in Khonsa forest division of Arunachal Pradesh which lies between $27^{\circ} 6^{\prime} 21.45^{\prime \prime} \mathrm{N}$ to $26^{\circ} 48^{\prime} 25.60^{\prime \prime} \mathrm{N}$ and $95^{\circ} 21^{\prime} 40.65^{\prime \prime} \mathrm{E}$ to $95^{\circ} 41^{\prime} 40.43$ " E . The forest division has two range namely Khonsa and Lazu range. Carto DEM was used to generate the elevation classes using Arc GIS tools. The elevation was categories into four classes that is $<800 \mathrm{~m}, 800-1800 \mathrm{~m}, 1800-2400 \mathrm{~m}$ and $>2400 \mathrm{~m}$. The field survey was carried out in the two ranges and sampling of the trees was done by random sampling method.

Fig. 1. Map showing sampling point location at different altitude gradient
Keeping in view, the sampling size of each plot was 31.6 m $\times 31.6 \mathrm{~m}$ for trees or woody species ($>30 \mathrm{~cm} \mathrm{GBH}$) and a total plot of 263 were collected for tree species and individuals. Tree species found in each quadrats were listed, and their girths at breast height (1.37 m) were measured. For each tree species,

[^0]values for frequency, density $\left(\mathrm{ha}^{-1}\right)$, and basal area were calculated. Each species' important value index was calculated by adding its relative density, relative frequency, and relative dominance. The study was also carried to find the diversity, species evenness and dominance indices by using the following formula:

Diversity index: The index was computed from the IVI values by using the formula Shannon-Wiener index (Shannon and Wiener 1963) was:

$$
H^{\prime}=-\sum_{i=1}^{n} P_{i} \ln P_{i}
$$

Where p_{i} is the proportion of the i th species and the number of individuals of all the i species (n / N)).

The criteria of the diversity index are classified into:
$\mathrm{H}^{\prime} \leq 1$ is low diversity, $1<\mathrm{H}^{\prime} \leq 3$ is moderate diversity and $\mathrm{H}^{\prime} \geq 3$ is high diversity.

Species evenness index: It provides information on the number of individuals of each species present in a community and is calculable using the formula.

$$
E=\frac{H^{\prime}}{\operatorname{Ln}(S)}
$$

Where E is the evenness index, H^{\prime} is the diversity index, S is the number of species found.

The evenness ranges from $0-1$ and based on Kreb (1989), evenness is categorized as:
$\mathrm{E} \leq 0.5$ is depressed community, $0.5<\mathrm{E} \leq 0.75$ is unstable community and $\mathrm{E} \geq 0.75$ is stable community.

Dominance index: The dominance was measured by Simpson's index (Simpson 1949) using the formula:

$$
C=-\sum_{i=1}^{n} P_{i}^{2}
$$

Where p_{i} is the same as for the Shannon-Wiener information function.

The dominance ranges from $0-1$ as categorized below:
$\mathrm{D} \leq 0.5$ is low dominance, $0.5<\mathrm{D} \leq 0.75$ is moderate dominance and $\mathrm{D} \geq 0.75$ is high dominance.

3. Results and Discussion

The phyto-sociological assessment of the different elevation classes has been carried out by taking into account of a total of 291 sampling points while each of them bearing an area of 0.1 ha. For the calculation of different phyto-sociological attributes the tree species under different elevation classes were taken. A total of 40,61 and 39 species were found at $<800 \mathrm{~m}, 800-1800 \mathrm{~m}$ and $>1800 \mathrm{~m}$ respectively. The Shannon Weiner's index was $2.390,2.799$, and 2.469 at $800 \mathrm{~m}, 800 \mathrm{~m}$ to 1800 m , and $>1800 \mathrm{~m}$, respectively, according to Table 1. In the study done by Saikai et al. (2017) the Shannon-Wiener diversity value was 4.64
which was higher than the present study. The study area has a moderate diversity index as per the criteria given by Ulfah et al. (2019). The total density per hectare at 800 m was 141.818 tree/hectare, $800-1800 \mathrm{~m}$ was 215.360 tree/hectare, and $>1800 \mathrm{~m}$ was 235.926 tree/hectare. Yumnam and Ronald (2022) found that the primary forest's total tree density was 395.75 stems per hectare, and the secondary forest's total tree density was 425 stems per hectare. The Simpson index was $0.028,0.019$, and 0.023 at $800 \mathrm{~m}, 800-1800 \mathrm{~m}$ and $>1800 \mathrm{~m}$ respectively. In the study it was found that the area has a low diversity as per Ulfah et al. (2019). Saikai et al. (2017) reported the concentration of dominance for trees was 0.02 which was less than the present study conducted. The Shannon Weiner's Index of primary and secondary temperate broadleaf forest of Indian Himalayas, according to Yumnam and Ronald (2022), was 3.10 and 3.21, respectively. Primary forest and Secondary forest each had a Simpson's index value of 0.05 and 0.04 , respectively. At 800 m , $800-1800 \mathrm{~m}$, and 1800 m , the species evenness of the study area was $0.652,0.684$, and 0.679 respectively, indicating that the community was unstable at all elevation classes. The requirements for an unstable community, according to Ulfah et al. 2019, should be $0.5-0.75$. From the Table 2, it was found that at $<800 \mathrm{~m}$ elevation, the highest IVI was in Terminalia myriocarpa (39.891) followed by Ailanthus integrifolia (30.085) and least in Artocarpus chaplasha (0.155). From Table 3, at elevation 800-1800m the highest IVI was in Schima wallichi (23.168) followed by Altingia excels (20.429) and least in Tetrameles nudiflora (0.127). From Table 4, the highest IVI was in Magnolia champaca (28.893) followed by Schima wallichi (27.479) and least in Eleocarpus floribundus (0.211). Geelani et al. (2018) found in the study that Picea smithiana had the most dominance among trees with an IVI value of (130.60), followed by Pinus wallichiana (55.44), Aesculus indica (29.91), Cedrus deodara (27.09), Abies pindrow (19.48), and Juglans regia (19.40), while Ulmus wallichiana had the lowest IVI (18.08).

Table 1
Community characteristics of Khonsa forest division at different elevation classes

Attributes					Elevation classes in meters		
	$<\mathbf{8 0 0}$	$\mathbf{8 0 0 - 1 8 0 0}$	$>\mathbf{1 8 0 0}$				
No. of sampling points	85	125	81				
No. of species found	39	60	38				
Diversity index (H')	2.390	2.799	2.469				
Species evenness (E)	0.652	0.684	0.679				
Dominance index (C)	0.028	0.019	0.023				
Density per hectare	141.818	215.360	235.926				

Table 2
Phyto-sociology characteristics of tree species of Khonsa forest division at <800 elevation class

Botanical name	Frequency	Density	Dominance	Relative frequency	Relative dominance	Relative density	IVI
Adina oligocephala	0.018	0.018	0.002	0.385	0.185	0.128	0.698
Ailanthus integrifolia	0.436	1.527	0.101	9.231	10.085	10.769	30.085
Albizia procera	0.127	0.218	0.018	2.692	1.849	1.538	6.080
Alstonia scholaris	0.055	0.164	0.010	1.154	1.002	1.154	3.310
Altingia excelsa	0.109	0.200	0.031	2.308	3.092	1.410	6.810
Amoora wallichii	0.091	0.218	0.009	1.923	0.907	1.538	4.369
Anthocephalus cadamba	0.055	0.164	0.011	1.154	1.118	1.154	3.426
Aporusa roxburghii	0.236	0.600	0.048	5.000	4.779	4.231	14.010
Artocarpus chaplasha	0.000	0.018	0.000	0.000	0.026	0.128	0.155
Baccaurea ramiflora	0.000	0.018	0.000	0.000	0.029	0.128	0.158
Balakata baccata	0.182	0.436	0.056	3.846	5.583	3.077	12.506
Bischofia javanica	0.036	0.055	0.005	0.769	0.539	0.385	1.693
Canarium strictum	0.236	0.800	0.051	5.000	5.092	5.641	15.733
Carallia brachiara	0.055	0.218	0.012	1.154	1.234	1.538	3.926
Celtris australis	0.127	0.236	0.009	2.692	0.934	1.667	5.293
Choerospondias axillaris	0.018	0.055	0.001	0.385	0.065	0.385	0.834
Chukrassia tabularis	0.236	0.691	0.057	5.000	5.705	4.872	15.577
Cryptocarya amygdalina	0.109	0.200	0.006	2.308	0.618	1.410	4.336
Cyclostemon assamica	0.091	0.255	0.010	1.923	0.980	1.795	4.698
Dillenia indica	0.164	0.382	0.011	3.462	1.088	2.692	7.242
Dipterocarpus macrocarpus	0.273	1.455	0.114	5.769	11.448	10.256	27.474
Duabanga grandiflora	0.218	0.600	0.036	4.615	3.597	4.231	12.443
Dysoxylum binectiferum	0.018	0.018	0.000	0.385	0.028	0.128	0.541
Dysoxylum procerum	0.109	0.200	0.014	2.308	1.430	1.410	5.148
Endospermum chinensis	0.127	0.400	0.018	2.692	1.849	2.821	7.362
Ficus racemosa	0.164	0.582	0.046	3.462	4.564	4.103	12.128
Garuga pinnata	0.091	0.091	0.001	1.923	0.088	0.641	2.652
Heteropanax fragrans	0.036	0.073	0.004	0.769	0.376	0.513	1.658
Kydia calycina	0.145	0.418	0.016	3.077	1.635	2.949	7.660
Lannea coromandelica	0.091	0.145	0.007	1.923	0.733	1.026	3.681
Macaranga denticulata	0.036	0.182	0.007	0.769	0.741	1.282	2.792
Mesua ferrea	0.036	0.073	0.003	0.769	0.333	0.513	1.616
Phoeba cathia	0.055	0.109	0.001	1.154	0.132	0.769	2.055
Phoebe goalparensis	0.036	0.073	0.003	0.769	0.282	0.513	1.564
Pterospermum acerifolium	0.055	0.055	0.003	1.154	0.279	0.385	1.817
Schima wallichi	0.164	0.436	0.020	3.462	2.010	3.077	8.549
Shorea assamica	0.273	0.909	0.061	5.769	6.093	6.410	18.272
Sterculia villosa	0.036	0.073	0.005	0.769	0.477	0.513	1.759
Terminalia myriocarpa	0.382	1.818	0.190	8.077	18.993	12.821	39.891
Total	4.727	14.182	1.000	100.000	100.000	100.000	300.000

Table 3
Phyto-sociology characteristics of tree species of Khonsa forest division at 800-1800 elevation class

Botanical name	Frequency	Density	Dominance	Relative frequency	Relative dominance	Relative density	IVI
Aesculus assamica	0.016	0.040	0.002	0.166	0.246	0.186	0.598
Aglaia spectabilis	0.168	0.296	0.008	1.746	0.805	1.374	3.925
Ailanthus excelsa	0.304	0.720	0.041	3.159	4.127	3.343	10.629
Ailanthus integrifolia	0.248	0.528	0.027	2.577	2.697	2.452	7.726
Alnus nepalensis	0.088	0.168	0.006	0.914	0.581	0.780	2.275
Altingia excelsa	0.536	1.416	0.083	5.569	8.285	6.575	20.429
Amoora wallichii	0.312	0.848	0.040	3.242	3.967	3.938	11.146
Anthocephalus kadamba	0.016	0.016	0.000	0.166	0.040	0.074	0.280
Baccaurea ramiflora	0.352	0.696	0.022	3.658	2.207	3.232	9.097
Balakata baccata	0.104	0.352	0.020	1.081	1.985	1.634	4.700
Bischofia javanica	0.360	1.000	0.043	3.741	4.275	4.643	12.659
Calophyllum polyanthum	0.024	0.024	0.001	0.249	0.078	0.111	0.439
Camellia sp	0.016	0.048	0.002	0.166	0.186	0.223	0.576
Canarium strictum	0.168	0.424	0.025	1.746	2.549	1.969	6.264
Carallia brachiara	0.016	0.016	0.000	0.166	0.040	0.074	0.280
Castanopsis indica	0.360	0.920	0.050	3.741	4.951	4.272	12.963
Choerospondias axillaris	0.072	0.160	0.008	0.748	0.836	0.743	2.327
Chukrassia tabularis	0.296	0.576	0.032	3.076	3.161	2.675	8.911
Cinnamomum glaucescens	0.368	0.968	0.044	3.824	4.360	4.495	12.678
Cinnamomum verum	0.472	1.016	0.028	4.904	2.818	4.718	12.440
Dysoxylum binectiferum	0.064	0.064	0.002	0.665	0.174	0.297	1.136
Dysoxylum hamiltonii	0.080	0.144	0.008	0.831	0.847	0.669	2.347
Dysoxylum procerum	0.400	0.648	0.035	4.156	3.505	3.009	10.670
Eleocarpus floribundus	0.144	0.288	0.008	1.496	0.825	1.337	3.659

Table 3 (Contd.)

Botanical name	Frequency	Density	Dominance	Relative frequency	Relative dominance	Relative density	IVI
Ficus nervosa	0.024	0.024	0.001	0.249	0.078	0.111	0.439
Garcinia	0.048	0.112	0.003	0.499	0.281	0.520	1.299
Garuga pinnata	0.256	0.544	0.022	2.660	2.219	2.526	7.406
Gironniers sp	0.056	0.080	0.004	0.582	0.378	0.371	1.332
Glochiodon sp	0.032	0.048	0.001	0.333	0.130	0.223	0.685
Ilex dipyrena	0.008	0.016	0.000	0.083	0.038	0.074	0.196
Juglas regia	0.104	0.240	0.012	1.081	1.227	1.114	3.422
Kayea assamica	0.104	0.208	0.005	1.081	0.532	0.966	2.578
Kydia calycina	0.168	0.400	0.019	1.746	1.947	1.857	5.550
Lanea coromandelica	0.408	1.072	0.056	4.239	5.561	4.978	14.778
Litsea panamonja	0.128	0.184	0.008	1.330	0.777	0.854	2.961
Lophopetalum fimbriatum	0.104	0.232	0.008	1.081	0.847	1.077	3.005
Macaranga denticulata	0.016	0.016	0.000	0.166	0.032	0.074	0.272
Machilus globusa	0.040	0.064	0.002	0.416	0.201	0.297	0.914
Magnolia champaca	0.432	0.952	0.052	4.489	5.176	4.421	14.085
Magnolia griffithii	0.152	0.264	0.014	1.579	1.386	1.226	4.191
Magnolia pterocarpa	0.128	0.248	0.006	1.330	0.583	1.152	3.065
Michelia champaca	0.096	0.144	0.010	0.998	0.975	0.669	2.641
Morus laevigata	0.016	0.032	0.001	0.166	0.063	0.149	0.378
Morus macroura	0.248	0.552	0.028	2.577	2.762	2.563	7.902
Myrica esculenta	0.008	0.008	0.000	0.083	0.035	0.037	0.155
Phoeba cathia	0.384	0.768	0.047	3.990	4.682	3.566	12.238
Phoebe goalparensis	0.008	0.016	0.001	0.083	0.145	0.074	0.303
Podocarpus neriifolius	0.192	0.536	0.016	1.995	1.625	2.489	6.109
Quercus sp	0.008	0.016	0.000	0.083	0.038	0.074	0.196
Schima khasiana	0.080	0.280	0.010	0.831	1.034	1.300	3.166
Schima wallichi	0.696	1.864	0.073	7.232	7.281	8.655	23.168
Spondias pinata	0.168	0.232	0.010	1.746	0.951	1.077	3.773
Sterculia villosa	0.096	0.128	0.003	0.998	0.349	0.594	1.941
Sterospermum chelonoides	0.112	0.176	0.006	1.164	0.643	0.817	2.624
Talauma phellocarpa	0.008	0.008	0.000	0.083	0.038	0.037	0.159
Terminalia bellerica	0.008	0.008	0.000	0.083	0.038	0.037	0.159
Terminalia chebula	0.080	0.168	0.009	0.831	0.896	0.780	2.507
Terminalia myriocarpa	0.216	0.512	0.035	2.244	3.503	2.377	8.124
Tetrameles nudiflora	0.008	0.008	0.000	0.083	0.007	0.037	0.127
Total	9.624	21.536	1.000	100.000	100.000	100.000	300.000

Table 4
Phyto-sociology characteristics of tree species of Khonsa forest division at >1800 elevation class

Botanical name	Frequency	Density	Dominance	Relative frequency	Relative dominance	Relative density	IVI
Aesculus assamica	0.519	0.840	0.023	4.947	3.558	2.302	10.807
Aglaia spectabilis	0.531	1.173	0.023	5.065	4.971	2.326	12.362
Ailanthus excelsa	0.037	0.099	0.005	0.353	0.419	0.460	1.232
Alnus nepalensis	0.704	1.617	0.051	6.714	6.855	5.073	18.641
Altingia excelsa	0.160	0.432	0.029	1.531	1.832	2.939	6.302
Amoora wallichii	0.148	0.358	0.017	1.413	1.518	1.666	4.597
Baccaurea ramiflora	0.173	0.420	0.013	1.649	1.779	1.272	4.700
Calophyllum polyanthum	0.222	0.432	0.012	2.120	1.832	1.233	5.185
Camellia sp	0.457	1.000	0.023	4.358	4.239	2.257	10.853
Castanopsis indica	0.741	1.778	0.122	7.067	7.535	12.204	26.806
Chukrassia tabularis	0.037	0.062	0.003	0.353	0.262	0.275	0.890
Cinnamomum glaucescens	0.272	0.765	0.032	2.591	3.244	3.228	9.063
Cinnamomum verum	0.333	0.605	0.014	3.180	2.564	1.429	7.173
Dysoxylum hamiltonii	0.148	0.210	0.013	1.413	0.890	1.305	3.608
Dysoxylum procerum	0.037	0.037	0.002	0.353	0.157	0.161	0.672
Eleocarpus floribundus	0.012	0.012	0.000	0.118	0.052	0.041	0.211
Garcinia	0.012	0.025	0.001	0.118	0.105	0.051	0.273
Garuga pinnata	0.037	0.062	0.002	0.353	0.262	0.236	0.851
Gironniers sp	0.012	0.025	0.001	0.118	0.105	0.050	0.273
Ilex dipyrena	0.519	1.247	0.024	4.947	5.285	2.405	12.637
Juglas regia	0.654	1.840	0.091	6.243	7.797	9.060	23.100
Lanea coromandelica	0.284	0.778	0.048	2.709	3.297	4.839	10.845
Litsea panamonja	0.556	1.049	0.028	5.300	4.448	2.837	12.585
Macropanax dispermus	0.259	0.543	0.014	2.473	2.302	1.385	6.161
Magnolia champaca	0.741	1.988	0.134	7.067	8.425	13.401	28.893
Magnolia griffithii	0.235	0.370	0.023	2.238	1.570	2.330	6.138
Magnolia pterocarpa	0.148	0.222	0.007	1.413	0.942	0.737	3.093
Michelia champaca	0.037	0.062	0.001	0.353	0.262	0.088	0.703
Morus macroura	0.296	0.642	0.036	2.827	2.721	3.554	9.102

Table 4 (Contd.)

Botanical name	Frequency	Density	Dominance	Relative frequency	Relative dominance	Relative density	IVI
Schima chinensis	0.012	0.012	0.001	0.118	0.052	0.058	0.228
Schima khasiana	0.074	0.173	0.006	0.707	0.733	0.567	
Schima wallichi	0.852	2.259	0.098	8.127	9.576	9.775	27.478
Sorbus wallichii	0.210	0.420	0.007	2.002	1.779	0.748	4.529
Spondias pinata	0.012	0.025	0.001	0.118	0.105	0.098	0.321
Total	10.481	23.593	1.000	100.000	100.000	100.000	300.000

4. Conclusion

Any species in a community plays a specific role and there is a definite quantitative relationship between abundant and rare species. From the result of the study, it was found that the tree species were mostly found and dominated in the elevation categories of 800-1800 meters where significant number of trees species were found. This area is dominated by Schima wallichi, Altingia excels, Dysoxylum procerum, Terminalia myriocarpa. Generally low elevation area has more diverse species than higher elevation due to climatic condition or soil characteristics. But in this study, the elevation of less than 800 meter has less diversity than the higher elevation and this would be due to some anthropogenic invention like jhum cultivation. Under this study, it was found that the forest area of the Forest Division is moderately diverse and unstable. The study also revealed that the species evenness and dominance decreases as elevation increases. Therefore, knowledge of phytosociological characteristics would help a forester to decide in managing the forest health. More trees can be planted in less diverse area. In area where one species is dominant, mixed species planting can be a good management practices. There are many different tree species in the forest at this altitude that may be helpful in the future. The forest can be sustainably useful to preserve biodiversity and reduce climate change with effective silvicultural methods.

References

[1] B. S. Bhandari, D. C. Nautiyal, and R. D. Gaur, "Structural attributes and productivity potential of an alpine pasture of Garhwal Himalaya," in Journal of Indian Botanical Society, vol. 78, pp. 321-329, 1999.
[2] J. J. Stachowicz, J. F. Bruno, and J. E. Duffy J, "Understanding the effects of marine biodiversity on communities and ecosystems," in Annual Rev Ecol, Evolution and Systematics, vol. 38, pp. 739-766, 2007.
[3] J. Y. Yumnam and R. Khukukcham, "Disparity in phytosociology, biomass and carbon stock of trees in primary and secondary temperate broadleaf forest of Indian Himalayas," in Indian Journal of Ecology, vol. 49, no. 5, pp. 1613-1620, 2022.
[4] L. Gamfeldt and H. Hillebrand, "Biodiversity effects on aquatic ecosystem functioning-Maturation of a new paradigm," in Internat Rev Hydrobiology, vol. 93, pp. 550-564, 2008.
[5] M. Ulfah, S.N. Fagri, M. Nasir, K. Hamsah, and S. Purnawan, "Diversity, evenness and dominance index reef fish in Kureng Raya water, Aceh Besar," in Earth and Environmental Sciences, 348(1), 012074, 2019.
[6] N. K. Mishra, R. Singh, S. Ojha, and Supreeti, "Phytosociological perspectives of representative herbaceous genera of common occurrence belonging to family asteraceae in grassland ecosystem of Anpara Region in district Sonebhadra (U.P.)," in Indian J. L. Science, vol. 2, no. 1, pp. 119-122, 2012.
[7] P. Saikia, J. Deka, S. Bharali, A. Kumar, O. P. Tripathi, L. B. Singha, S. Dayanandan, and M. L. Khan, "Plant diversity patterns and conservation status of eastern Himalayan forests in Arunachal Pradesh, Northeast India," in Forest Ecosystems, 4:28, 2017.
[8] Q. M. Ketterings, R. Coe, M. van Noordwijk, Y. Ambagau, and C. A. Palm, "Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests," in Forest Ecology and Management, vol. 146, no. 1-3, pp. 199-209, June 2001.
[9] R. H. Whittaker, "Evolution and measurement of species diversity," in Taxon, vol. 21, no. 2/3, pp. 213-251, May 1972.

[^0]: *Corresponding author: lyngdohkelmi8@gmail.com

