
International Journal of Research in Engineering, Science and Management
Volume 5, Issue 12, December 2022
https://www.ijresm.com | ISSN (Online): 2581-5792

*Corresponding author: mahidharlolla1@gmail.com

70

Abstract: FIR Filters have been a key component of digital

signal processing's work for a very long time. These filters have
expanded in significance in terms of the signal processing with the
introduction of newer technology. Although numerous models of
the FIR Filter have been built by researchers using a variety of
techniques, some potential problems that should be focused on
during these implementations are only addressed. Therefore, the
work here ensures that a number of those problems are addressed
during the implementation over MATLAB and that solutions are
provided in order to greatly increase the effectiveness of the
implementation. The misconceptions about magnitude and
input/output responses, the idea of group delay, and difficulties
with direct convolutional implementation are some examples.
Additionally, several analogies are given to explain the FIR Filter
in terms of its mathematical models and also the use of the
weighted average filter is illuminated.

Keywords: MATLAB, FIR filter, Group delay, Magnitude
response.

1. Introduction
In the past few decades, a variety of adaptable designs for the

suggested FIR filter design in signal processing have already
been introduced, culminating in discussions and
implementations of its use in numerous applications.
Nevertheless, there has been a lot more development and study
in the design and application of the suggested filter for the
correct applications. One of these great improvements is the
modification of the development board utilised for the FIR
filter's implementation.

According to the literature, the first FIR filter designs
developed roughly ten years ago used basic adders and
multipliers from digital electronics. They also included the use
of sequential devices like flip flops to create the necessary delay
for the filter equipment to operate effectively. The appropriate
Verilog code for its execution was synthesised onto different
FPGA boards, including the Spartan 6, Xilinx Zynq-7000 Soc,
and Xilinx Virtex 6 FPGA device. In order to comprehend how
adaptable an FPGA Board is in the implementation of such
DSP-based high computational circuits; this study was
conducted.

As a result, new developments in architecture are now
possible. Flip-flop models were suggested to be replaced by
buffers, signed multipliers were taken into consideration, and

enhancements to adder circuits were also suggested. Significant
issues like noise, interference, delay, and high resource use
emerged as the filter's order was raised. The data path and
control path-based architecture that will be proposed will
therefore put a strong emphasis on minimising delay and
resource usage.

In particular, the filer implementation in digital signal
processing has traditionally used MATLAB. The study
explicitly outlines MATLAB's use cases for the filter
implementation in addition to the standard implementation.
This may take into account elements like coefficient generation,
delay (phase or group), impulse responses, etc. The
development of HDL has made it possible to carry out such
implementations at a higher level, making it simple to design
even higher order filters. The use of boards like FPGAs, whose
capacity to handle such operations is extremely efficient, is
made necessary by the HDL implementation. Discussions
around the MATLAB and Verilog programming language
interface for the necessary analyses have begun. Also addressed
in this work are several use cases where this interface may be
excluded. These days, there is a tremendous demand for
computerised models for all types of implementations. These
might include the need for them in bio-medical applications,
such as the need to identify and eliminate noise from ECG and
EEG signals. These filters are also used for heave measurement
in submarines. Multi rate filters combine these types of filters
to change the frequency of the signals. In essence, the filters are
used in all of these.

2. Methodology
The use of MATLAB to implement FIR filters offers a

variety of possible approaches. One of these is to use the FDA
tool, in which the interactive designer used to obtain the
coefficients and the appropriate design code. The workspace
receives the exported coefficients. Along with the provision of
specific random input, the MATLAB code created by the tool
was examined for its magnitude and phase responses in order to
determine the properties of the filtered response. The general
sinusoidal signal with additional noise was chosen as the
random input.

The alternative method involved manually creating a

Case Teaching of MATLAB Implementation of
FIR Filter with an Overview of Filter Analogies

Lolla Mahidhar1*, Apurva Kumari2

1Student, Department of Electronics and Communication Engineering, B. V. Raju Institute of Technology, Medak, India
2Associate Professor, Department of Electronics and Communication Engineering, B. V. Raju Institute of Technology, Medak, India

Mahidhar et al. International Journal of Research in Engineering, Science and Management, VOL. 5, NO. 12, DECEMBER 2022 71

MATLAB FIR filter code using window techniques. Kaiser
Window was selected to be used out of a variety of commonly
available windowing techniques. The major lobe width of the
Kaiser window can be altered using a parameter. As a result,
the filter response can be adjusted as needed. The data,
however, demonstrate the implementation specifics. The
findings are achieved by using the built-in functionalities of the
filter once more to create the FIR filter using the Kaiser
window. There is a contradiction in this as well. Although the
Kaiser window has many benefits, its implementation on
platforms for signal analysis like MATLAB is much more
feasible. However, when it comes to tools based on hardware
and real-time implementation, such as those using HDL,
implementation becomes challenging. Therefore, in the
subsequent portion of the work, it is suggested that changes to
the architecture when done using HDL. The architecture has
been optimised as a result of these changes. The above-
mentioned process was executed and the results were analysed
in detail.

Fig. 1. Kaiser window magnitude response

There were several outcomes. The creation of the FIR filter

using MATLAB code and straightforward built-in functions
produced magnitude and phase graphs, which were then
displayed using the plot function. Additionally, when a random
input was presented, different responses were plotted and
identified.

A. Magnitude response vs. Output Response
The filtered output stream is sometimes mistaken for the

filter's overall magnitude response. In terms of waveforms,
MATLAB implementation will show the differences between
the two.

Fig. 2. Basic FIR magnitude and phase response

The charts for both replies were implemented using the
"Plot" and "freqz" functions. If a plot function is supplied, the
filter functions created using MATLAB code and built-in
functions like firpm result in a plot of the magnitude responses
as well as the phase response. Additionally, the plot function
was now useful to depict the output filtered response when
some random signal with noise like noise added sinusoidal
signal is given as the input to the filter. Similar HDL
implementation techniques make it possible to demonstrate that
something is working by changing the amplitude of the input
stream signal as shown by waveforms plotted against time. The
most important thing to remember from this was that the output
wave of the filter is less than the input wave at different stages
(since LPF was taken into account).

B. Group Delay
For modulation, filters are frequently employed to reduce the

signal's amplitude at various frequencies. Additionally, filters
can cause variations in the phase of various frequencies, even
when the amplitude is unmodulated. The timing information
between different frequencies within the same signal and
between separate signals may be disrupted by these phase
shifts, which may result in time lags in the filtered signals. In
the case of linear phase filters, such as FIR Filters, these time
delays are constant, while in the case of non-linear phase filters,
they change as a function of frequency. As a result, before
sampling, timing information in signals may be distorted. These
delays can be avoided in a variety of ways. This delay is seen
not just in MATLAB but also in HDL-based implementation.
There are a few potential solutions to this problem when taking
into account the MATLAB implementation. Particularly, group
delay has always been of interest in the FIR filters. Zero phase
filters may be used to fix the phase delay. Zero phase shift is
introduced for all frequencies. Research claims that these zero
phase filters, however, cannot be used in online applications.

Fig. 3. I/O Response with group delay (180-degree phase shift)

Therefore, taking into account the online application, the

original timing of the signal can be recovered by simply
imitating the zero-phase filter's functionality once the
parameters of the appropriate filter are properly determined, as
is the case of MATLAB. As the coefficients of the zero-phase
filter must be symmetric around zero, the real-time

Mahidhar et al. International Journal of Research in Engineering, Science and Management, VOL. 5, NO. 12, DECEMBER 2022 72

implementation of this zero-phase filter is currently not
feasible. Inferentially, this suggests that the filter is not causal
and that the current output depends on the input received in the
future. Therefore, in this work, a method that may replicate this
characteristic was sought after. Since the building of such a
filter in real time is undoubtedly impossible, the use of
MATLAB's "filtfilt" function is suggested here. The "filtfilt"
function can simulate zero phase filtering during post-
processing of the signal. This is a MATLAB built-in function.
The following ideology for the mimicking process was
discovered through implementation and analysis:

Since FIR filters have been taken into consideration, linear
phase filters may not always cause phase distortion. It simply
signifies that the output has been given a time shift. A constant
shift with respect to time derives from a linear phase shift with
respect to frequency. Simply expressed, the output will follow
the input by a fixed number of samples. The group delay was
specially formed by this.

If it is wished to keep the output signal aligned with the input
signal, a track of the group delay must be kept. Simply
expressed, the delayed version of zero-phase output is what is
meant by linear phase output. As seen in the image below, the
use of “filtfilt” to construct the filter has now made it possible
to eliminate this delay instead of utilizing the standard filter
functionalities.

 In contrast, when HDL is used for implementation, what is
referred to as offline filtering, a filter that functions similarly to
an online filtering process is applied to the reversed signal,
causing the phase shift to return to zero and restoring the timing
of the filtered signal. This problem has been solved in the
literature, and the design equations are used right here:

It is possible to build a pair of cascaded required filters (low
pass is taken into consideration here) and all pass filters (which
produce phase lead) so that the phase lag brought on by the
required filters is counterbalanced by the phase lead generated
by the all-pass filters. During the entire process of getting rid of
the delay, it was discovered that when the impulse response of
the forward and backward filtering was added up under the
Non-Linear Phase (NLP) filtering process, the added impulse
response was windowed to make it finite, and then the finite
length kernel was delayed so that no additional samples were
needed. Now, this can be used directly as the kernel for a FIR
filter. The need for the interface between tools used to make
filter designs may be eliminated by this technique.

C. Weighted Average Filter
Most individuals recognize filters in terms of frequency. The

filter also has a time-domain explanation, as may be seen
below:

Any signal, let's take an audio signal as an example, is a
digital data made up of a number of digital samples. Simply put,
each sample can be considered to be nothing more than a
number. Therefore, it can be assumed—but this is simply an
assumption and not actual fact—that an audio file is a collection
of numbers stored in an array. Let's imagine that the first
coefficient in the FIR filter is an amplification coefficient and
the second coefficient is a multiplication coefficient for the

previous sample. The amplification factor for the second
previous sample is represented by the third coefficient.

Each of these coefficients is equivalent to multiplying a large
number of serial data points by a variety of values. Let's say it
is desired to remove all the high frequency components or
spikes using a low pass filter. It is conceptually comparable to
"averaging." All input samples are averaged in weighted
fashion in FIR filters. Weights indicate the relative importance
of each data point in advance. This indicates that since weight
values cannot be negative, they must all be positive.

The averaging works best when the weights are similar, and
vice versa. Lower cut off frequency here results from better
averaging. When all the coefficients are identical, the weighted
average becomes the simple average. The equalization of the
frequency values of a data set is carried out via the weighted
average.

The following is the FIR filter equation:

𝑌𝑌(𝑛𝑛) = Σ 𝑏𝑏𝑘𝑘 ∗ 𝑥𝑥(𝑛𝑛 − 𝑘𝑘)
𝑌𝑌(𝑛𝑛) = 𝑏𝑏0. 𝑥𝑥(𝑛𝑛) + 𝑏𝑏1. 𝑥𝑥(𝑛𝑛) + ⋯

The averaging is now understood to be the simple sum of the

weighted function as in the equation above where the weighted
functions b0, b1, b2, etc. Let's use the example of data samples
a and b with weighted functions of 0.5*a and 0.5*b. A value
equal to the average of these values is obtained when these
values are added together. Here, samples in the order-of-time
domain are being used. We need to determine the Discrete Time
Fourier Transform (DTFT) and Discrete Fourier Transform
(DFT) in order to determine the frequency domain of the
collection of these samples. The reduction of the amplitude in
the final response making weighted average a success.

D. Filter Analogies
An impulsive response that is smeared and needs to pass

through the filter is considered. The filter's result is an impulse
response that has been cleaned up. DSP blocks are now mostly
utilized to quickly complete complex and specialized
calculations. DSP processors, FPGAs, and ASICs can all be
directly used to do these calculations. At this point, the digital
filters can be viewed as a straightforward mathematical model.
An equivalent mechanical mechanism is used here to specify
the digital filter system:

Fig. 4. Oscillations of a ball on a spring

Suppose a ball on the spring. This ball may roll up and down

with certain oscillations and a gradually decreasing amplitude
when an impulse input is applied to it.

If this is considered to be an IIR filter, then the resonance can

Mahidhar et al. International Journal of Research in Engineering, Science and Management, VOL. 5, NO. 12, DECEMBER 2022 73

forever take to delay. This is a different case with respect to the
FIR filter since impulse response is finite. Upon further
simplification, the equation is found to reduce to the form as
follows:

𝑦𝑦𝑜𝑜 = 2𝑦𝑦1 − 𝑦𝑦2 + 𝑦𝑦1𝑘𝑘𝑐𝑐𝑡𝑡 −
𝑦𝑦1 − 𝑦𝑦2

2𝑚𝑚
∗ 𝑡𝑡3

y1 and y2 are two consecutive positions of ball.
kc is spring constant.
t is time and m indicates the mass of the ball.
yo is the next position of the ball that is analogous to the next

coefficient calculation in FIR filter.

Fig. 5. Underdamped LPF response

Fig. 6. IIR filter equivalent circuit

The above equation finally reduces to the form of average

equations as shown below:

𝑦𝑦0 = 𝑎𝑎.𝑦𝑦1 + 𝑏𝑏.𝑦𝑦2

IIR filters model the actual physical process, whereas FIR

filters just model the end result.
Take into account the filter's impulse response, as displayed

below. This is taken from the MATLAB tool when FIR Filter
is designed. It is found from the work that the filter coefficients
are acquired for the FIR Filter when the impulse response of the
filter is reversed. These coefficients are similar to the one’s
obtained from the FDA tool of MATLAB. As is customary, the
input value is now multiplied by the matching samples to
calculate the next sample.

Fig. 7. Impulse response

Although it has been discovered that one of the filter arrays

was actually flipped, this step is typically skipped because FIR
Filter coefficients are largely symmetrical.

Fig. 8. Coefficients (MATLAB)

As is already known, the impulse response of the FIR filter

is truncated after the finite section.
There are two possible explanations for how the FIR Filter

works.
• Each output sample is a weighted average of the most

recent input sample, which is the first factor.
• With regard to the second, output is the culmination of

all impulse reactions to every prior input.
Analogy 2:
Another example used is a loudspeaker, which is a frequent

application for FIR filters. The loudspeaker output can be
filtered by multiplying the filter coefficients using the speaker's
output samples to obtain the summed weighted averages. It was
intended to happen this way.

Fig. 9. Loud speaker equivalent circuit

However, there was no practical way to link the output of a

Mahidhar et al. International Journal of Research in Engineering, Science and Management, VOL. 5, NO. 12, DECEMBER 2022 74

loud speaker to the FIR Filter when the circuit tended to
produce a mechanical output.

In order to make these effective loud speakers, commutative
property can be used as a simple solution. The FIR Filter was
supposed to be placed between the signal source and amplifier
in this scenario. The audio signal can be passed as the input
stream to the FIR filter coefficients multiplication stage. This
signal is then given to the amplifier and thus, finally, amplifier
output is taken. The output of the amplifier has a time smear.
As a result, it is discovered that the FIR Filter stops the
loudspeaker's resonance. The same type of idea can be applied
to temporal equalization. The output of loudspeaker is an
impulse as can be observed below:

Fig. 10. Impulse to be provided in loudspeaker analogy

Since they only rely on the convolution between the kernel

and the input, FIR filters are simple to create. Here, "Kernel"
refers to the collection of filter coefficients. Convolution
operations include multiplying the corresponding elements of
two arrays of the same size and adding the results to get one
output value. Convolution is a fundamental principle of FIR
filters, but because it performs differently on different types of
hardware, implementations including sequential, parallel,
pipelined, moving average, and weighted average have been
introduced. The input length is typically more than the kernel
length in this case, but it can also be infinite, and the number of
coefficients produced is the same as the number of taps that is
further same as the number of the inputs.

E. Direct description of convolution
The previously described convolution process is directly

described by the direct form structure, as seen in the image
below. Shift registers might act like the memory's constituent
parts. Here, simpler mathematical procedures are performed.

The drawback in this case is that depending on the sequence
of the filter, more than two addition operations are involved in
a single summation step. Although possible in HDL, this
implementation is challenging. A too-long logical path between
the input and the output can cause problems during
implementation.

𝑥𝑥(𝑛𝑛) ∗ ℎ(𝑛𝑛) = � ℎ[𝑘𝑘] ∗ 𝑥𝑥[𝑛𝑛 − 𝑘𝑘]
𝑘𝑘=+∞

𝑘𝑘=−∞

Fig. 11. Basic FIR

The convolution in the time domain is identical to the

multiplication in the frequency domain, as is known from
theoretical and mathematical models. This procedure was also
impractical for implementation since frequency components
can only be formed after they are amplified or attenuated, not
when they are generated. The coefficients, not the structure
itself, control the spectral properties. The pipelined form of
implementation was chosen as an alternative to eliminate these
concerns.

Pipelining involves shortening the distance between registers
without affecting the device's functionality by changing the
design or placing registers in between processes. This is
advantageous for implementation in MATLAB and HDL. The
addition is suited for hardware implementation because it is
divided into several stages and separated by registers.

Fig. 12. Pipelined FIR

The architecture that is illustrated below makes input

multiplication easier at every stage. As in the earlier systems,
the direct input value is multiplied by the coefficients.
Additionally, employing for loops is the most elegant approach
to create such a filter. However, because these loops cannot be
synthesized in languages like HDL, they are not advantageous
for the real-time implementation of the filters.

3. Results
The various stages of FIR Filter implementation over the

MATLAB tool provide the users with multitude of flexibilities.
The common misconception of the magnitude response to the
input/output response is cleared in the work discussed here so
as to clearly identify and comprehend the meaning of
magnitude response as well as the input, output response.

Another major issue behind the usage of the FIR Filter has
been the potential group delay introduced in the final filtered
response. This has also successfully been addressed and the
comparison of both the responses is shown so as to indicate the
elimination of the group delay.

Along with these details, the reduction in the magnitude of
the output response indicating the effective operation of the low

Mahidhar et al. International Journal of Research in Engineering, Science and Management, VOL. 5, NO. 12, DECEMBER 2022 75

pass FIR filter has successfully been established. The spikes of
the input signal higher in their amplitude are reduced to their
specified minimal levels.

Fig. 13. I/O response

Fig. 14. Elimination of group delay indicated by zero phase change

Fig. 15. Filtered signal with reduced amplitude

4. Conclusion and Future Work
The basic implementation and the case teachings have clearly

been indicated. FIR Filters have their effective nature indicated
when they are used in conjunction with their window
techniques.

Although Kaiser window was used to implement the filter in
the present work, the detailed analysis of the same is not
provided. Hence, as part of the future work to be taken up, the
functioning of FIR Filter with various windows like
rectangular, bartlett, Hamming and Hanning window etc., may
be considered.

Since, MATLAB is best proved to implement the FIR filters,
the implementation has potential advantages when achieved on
the reconfigurable logic and hence FPGA implementation for
the window techniques-based FIR Filters may also be
considered.

References
[1] S. Kumar, R. Mehra and Chandni, "Implementation and designing of FIR

filters using kaiser window for de-noising of electrocardiogram signals on
FPGA," 2016 IEEE 7th Power India International Conference (PIICON),
2016, pp. 1-6.

[2] R. Das, A. Guha and A. Bhattacharya, "FPGA based higher order FIR
filter using XILINX system generator," 2016 International Conference on
Signal Processing, Communication, Power and Embedded System
(SCOPES), 2016, pp. 111-115.

[3] T. C. Singh and M. Kumar, "Digital FIR Filter Designs," 2021 Asian
Conference on Innovation in Technology (ASIANCON), 2021, pp. 1-5.

[4] Niyama, Aaquib & Ramane, Sahil & Chhadwa, Neil. (2022).
Implementation of IIR and FIR filters in Simulink MATLAB and its
application in ECG.

[5] Rajesh Kumar Dwivedi, Raghav Dwivedi, 2017, FIR Filter
Implementation using Matlab Fdatool and Xilinx Vivado, International
Journal of Engineering Research & Technology, vol. 6, no. 10, October
2017,

[6] V. Dhillon, S. Nair, A. Pabarekar, M. Kumbhare, K. Thakur and R.
Krishnan, "Implementation of FIR Digital Filter on FPGA," 2021 4th
Biennial International Conference on Nascent Technologies in
Engineering (ICNTE), 2021, pp. 1-5.

	1. Introduction
	2. Methodology
	A. Magnitude response vs. Output Response
	B. Group Delay
	C. Weighted Average Filter
	D. Filter Analogies
	E. Direct description of convolution

	3. Results
	4. Conclusion and Future Work
	References

