
International Journal of Research in Engineering, Science and Management
Volume 5, Issue 12, December 2022
https://www.ijresm.com | ISSN (Online): 2581-5792

*Corresponding author: vaani.garg@msit.in

45

Abstract: For a long time, developers have been spending a big

part of their time and efforts in managing and caring for the server
infrastructure of their application or website. Moreover, they have
had to tend to the operating system and web server hosting process
required for their application. They have had to divide their
attention away from the main product their organisation offers.
There has to be an easier way. A serverless architecture is a way
to build and run applications and services without having to
manage the backend infrastructure. Your application still runs on
servers, but all the server management is done by the cloud
provider. The purpose of this project is to completely explore the
serverless architecture in its whole depth and breadth. It contains
the comparison of serverless way of architecting applications with
the traditional way of deploying applications on provisioned
servers. It includes the comparison of cost, dependency on code
quality, type and domain of project and the correct way of
architecting applications for serverless. Serverless applications are
made to run pods for each process request and these pods kill
themselves or are killed by a master process in a master-slave
architecture. A completely separate microservice based on NodeJS
was created as the NodeJS based microservice is acting as a
storage location server which stores all data that is required to be
saved.

Keywords: Serverless architecture, AWS, Persistent storage,

Traditional server, Web crawler.

1. Introduction
Servers are the backbone of any real-world, production-grade

application. If you want to maintain such an application on the
internet, you need to have servers that handle user traffic and
requests. Traditionally these things have been managed through
manually-maintained, offline databases and servers. Even
though they may do the job in a lot of cases, they are a nuisance
even in the best of scenarios. The larger an organisation gets,
the bigger does its traffic gets. This means in the long-term you
need more and more people to maintain and upgrade your
backend servers, the very same people who could have been
productive in different ways at different places.

Thus, serverless architecture offers a lot of incentives to
companies which desire a better way to manage their backend.
Companies can now offload the burden of managing their
complex databases to cloud providers like Amazon and Google,
who offer services like AWS and GCP respectively. Users of
these services can opt for their paid plans, even though free
plans are also usually available. Users pay for having cloud
servers and computers on a pay-as-you-use basis, and therefore
all the traffic and data management is managed by these cloud

providers in lieu of a fee for their services.

2. Literature Review
Quite a bunch of work has already been done on Building

serverless applications. Salesforce.com started the first popular
SaaS cloud computing services in 1999. Today, Amazon,
Google and Microsoft lead the pack in terms of providing cloud
computing services. Cost-effective- Serverless provides a pay-
per-use model where businesses don't need to invest in extra
servers for handling an estimated workload.

The inherent convenience and scalability of serverless cloud
providers has enticed quite a few big companies and startups. A
serverless implementation of a core banking system is
presented Pu et al. [1]. Goli et al. [2] presents a case study of
migrating to serverless in the FinTech industry.

Big cloud providers like Amazon and google often offer
complex, multi-layered solutions like Cache and Ram on the
cloud too. Amazon for example offers Elasti Cache, which is an
in-memory cache and data store. It is around 700x more
expensive than Amazon’s standard storage service. Infini
Cache [3] is another in-memory object caching system based on
stateless cloud functions. Cloud Burst [4] also proposes a
caching mechanism in its architecture. Other latest
advancements in the area are elaborated in [5]-[7].

3. Objectives
The primary objective of our work is to design an effective,

optimized, and automated pipeline of the complete serverless
architecture. The secondary objective is to create applications
with different scenarios and to compare the cost, dependency
on code quality, traffic dependency, and fit of different kind of
projects in serverless.

We approach this problem:
1. Create a project on serverless architecture.
2. Compare it with the traditional server approach in

terms of cost, code quality, and flexibility.
3. Solve the problem of persistent storage on serverless

architecture.

4. Methodology

A. Tools And Techniques Used
Tools and techniques we used for “Traversing Serverless

Architecture” project include:
1. React JS

Traversing Serverless Architecture
Vaani Garg*

Assistant Professor, Department of Computer Science and Engineering, Maharaja Surajmal Institute of Technology, Delhi, India

Garg et al. International Journal of Research in Engineering, Science and Management, VOL. 5, NO. 12, DECEMBER 2022 46

2. Node JS
3. AWS

1) React JS
React JS is a JavaScript library to build online Single page
applications in a quick and efficient manner. It is a
component-based library which accomplishes state
management via hooks. We will use React JS in tandem with
Material UI to build a beautiful frontend interface for our
website in an efficient manner.

2) Node JS
NodeJS is an open-source JS framework that is designed to

build scalable network applications. NodeJS is a server-side
platform built on Google Chrome's V8 JavaScript Engine.
3) AWS

AWS is the world’s leading cloud database/server offering
company with more than 100 distinct services available. More
and more businesses are increasingly choosing to go online
without having to deal with the hassle of independently
managing a server. That is where AWS comes in.

B. Implementation
For the proposed website, we developed the entire

application on React JS and NodeJS, while using AWS to host
and power our website. We used beautiful Soup to write web
crawlers in python to fetch data from our chosen websites and
arrange the information on our webpage. We hosted our
crawlers on AWS and they will run every day at a selected time.
The resources needed to run the crawlers along with the cloud
space needed to store our data will incur cost to us, and we
compared how the costs vary with various software tweaks, and
how they compare with a local server architecture. We noted
how different parameter variations lead to cost fluctuations in
our cost.
1) UI/UX

We have created a beautiful UI to present this functionality
in a pleasing manner. We are using ReactJS as our frontend
framework. Users can come to our website and see jobs from
various big tech companies in a sorted manner, thus saving their
time while job hunting.
2) Traditional Server vs Cloud Server

Fig. 1 and Fig. 2 depict how the data that our web crawler
fetched from the Amazon website. The crawler is deployed on
Amazon's cloud servers, thus saving us the need to set up our
own. The data is fetched in JSON format, and can then be
displayed using react JS in a pleasing manner. Table 1 shows
the comparison of Traditional vs. Serverless architecture.

Fig. 1. Code for web crawler

Fig. 2. Data fetched by web crawler

Fig. 3. Traditional server

Table 1
Traditional vs. Serverless architecture

Topic Traditional On-premise Server Serverless
Cost on production Preferred for applications with huge traffic Preferred for applications with moderate and less

traffic
Use Case Works best for heavy applications connected with multiple services

running together
Works best for APIs and trigger-based systems.

Speed of
Development

No initial setup required. Initial setup is required but load balancing is not
required

Speed Depends on both the intermediate services and the resources of the hosted
system

Depends majorly on the code quality

Garg et al. International Journal of Research in Engineering, Science and Management, VOL. 5, NO. 12, DECEMBER 2022 47

Fig. 3 shows the implementation of a traditional JSON server
using NodeJS. It is powered by our local machine, and hence is
less powerful, even if we retain more control.

Fig. 4. Code to fetch data and send emails

We call the functions deployed on Amazon's lambda bucket

as shown in Fig. 4. We ask our web crawler to go through the
Amazon page and fetch the Jobs data, while also sending a
reminder E-mail to everyone who has signed up for our mailing
services. The mail service is also powered by AWS. There are
many research advancements in the area [8], [9].
3) Persistent Storage

Serverless applications are made to run pods for each process
request and these pods kill themselves or are killed by a master
process in a master-slave architecture. Thus, serverless
applications cannot persist storage or maintain a permanent
storage point for files. While databases help store structured
data and similarly S3 buckets and other static storage services
help us store images, permanent native file storage is required
for storage while processes run. This problem is solved in the
following manner: A completely separate microservice based
on NodeJS was created which was hosted separately.

Fig. 5. NodeJS code

5. Results
Serverless applications cannot persist storage or maintain a

permanent storage point for files. While databases help store
structured data and similarly S3 buckets and other static storage
services help us store images, permanent native file storage is
required for storage while processes run.

This problem is solved in the following manner: A
completely separate microservice based on NodeJS was created

which was hosted separately. This microservice was capable of
handling incoming request which has data that needs to be
stored or a request to read existing data. This microservice helps
store data permanently. Whenever the serverless architecture
requires to store some data permanently, it sends a request to
the microservice, which in turn creates mapping of that
particular request and the file it creates and stores data in it. This
data can then be later accessed by making another request from
the serverless architecture. Thus, the NodeJS based
microservice is acting as a storage location server which stores
all data that is required to be saved.

Fig. 6. UI screen

Fig. 7. Dashboard

6. Conclusion
Our comparisons in data storage and processing between

local NodeJS servers and AWS cloud servers have yielded the
expected results. While we retained more instantaneous control
over our data and privacy while using persistent storage, we
found it easy to scale our application when the backend was
hosted on AWS, as in when we were using serverless
architecture.

7. Future Scope
In the future, we could experiment with expanding the scope

of our testing. We can use different types of frameworks and
SDKs in one project and host them separately on local and
cloud servers. We can try to create separate buckets for
individual users, thereby enhancing the security, scalability,
and privacy of our application.

We could compare how two different cloud service providers
(For Ex- Google and Amazon) fare against each other when we
compare the latency and load-bearing capacity of their servers.

Garg et al. International Journal of Research in Engineering, Science and Management, VOL. 5, NO. 12, DECEMBER 2022 48

References
[1] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. “Shuffling, fast and

slow: Scalable analytics on serverless infrastructure”, 16th USENIX
Symposium on Networked Systems Design and Implementation, 2019.

[2] Alireza Goli, Omid Hajihassani, Hamzeh Khazaei, Omid Ardakanian,
Moe Rashidi, and Tyler Dauphinee. “Migrating from monolithic to
serverless: A Fintech case study”, 2020.

[3] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar, Lukas Rupprecht,
Dimitrios Skourtis, Vasily Tarasov, Feng Yan, and Yue Cheng.
“Infinicache: Exploiting ephemeral serverless functions to build a cost-
effective memory cache”, 18th USENIX Conference on File and Storage
Technologies (FAST 20), 2020.

[4] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-
Smith, Jose M. Faleiro, Joseph E Gonzalez, Joseph M Hellerstein, and
Alexey Tamanol, “Cloudburst: Stateful functions-as-a-service”, 2020.

[5] Lam Phuoc Huy, Saifullah Huey, Marcel Sahillioglu, and Christian Baun.
“Crypto Currencies Prices Tracking Microservices Using Apache
OpenWhisk”, 2021.

[6] Jens Kohler. “A Serverless FaaS-Architecture: Experiences from an
Implementation in the Core Banking Domain.”, 2021.

[7] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar, Lukas Rupprecht,
Dimitrios Skourtis, Vasily Tarasov, Feng Yan, and Yue Cheng.
“Infinicache: Exploiting ephemeral serverless functions to build a cost-
effective memory cache”, 18th USENIX Conference on File and Storage
Technologies (FAST 20), 2020.

[8] Jatana, Nishtha, and Kapil Sharma. "Bayesian spam classification: Time
efficient radix encoded fragmented database approach." 2014
International Conference on Computing for Sustainable Global
Development (INDIACom). IEEE, 2014.

[9] Dhand, Geetika, and S. S. Tyagi. "Survey on Data-Centric protocols of
WSN." International Journal of Application or Innovation in Engineering
& Management, 2.2 (2013): 279-284.

	1. Introduction
	2. Literature Review
	3. Objectives
	4. Methodology
	A. Tools And Techniques Used
	1) React JS
	2) Node JS
	3) AWS

	B. Implementation
	1) UI/UX
	2) Traditional Server vs Cloud Server
	3) Persistent Storage

	5. Results
	6. Conclusion
	7. Future Scope
	References

