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Abstract: An SoC (System on Chip) comprises many functional 

units. These functional units consist of many lower-level 
components such as comparators, shifters, adders, etc. In this 
paper, we talk about one of these functional units called bit 
movement engine. A bit movement engine moves chunks of data 
from one memory location to another. Bit movement engine is 
designed to move bits starting from any location in the memory 
block and it can move a variable number of bits. At the core of the 
bit movement engine is a funnel shifter.  Bit movement engine 
communicates to memory through an AHB (AMBA High-
Performance Bus) fabric. Any functional unit developed requires 
a thorough verification to certify that the functional unit behaves 
as expected. The functionality of the bit movement engine is 
modeled in the test bench and the behavior of the bit movement 
engine is checked. The bit movement engine is verified using UVM 
(Universal Verification Methodology).   
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1. Introduction 
SoC consists of many IPs. A bit movement engine is one such 

IP that moves bits of data on a word-oriented bus. Bit movement 
engines can move any number of bits to any non-overlapping 
location in the memory. Since this engine can operate on a bit 
level and can move variable lengths of data, the design is quite 
complex. GPUs that do a massive amount of data manipulation 
and memory alteration have IPs that do a similar job as the bit 
movement engine [1].  

On many occasions, IPs have interfaces that are different 
from the interfaces of the IPs they talk to. In these cases, bridges 
are used to convert one protocol to another. This enables the 
reuse of IPs. Bit movement engine uses a bridge to convert its 
native interface protocol to AHB protocol [2]. AHB bridge 
further talks to a fabric. Fabric is typically connected to multiple 
masters and slaves. Fabric is responsible for arbitrating requests 
from masters and slaves. In this paper, Fabric acts as a 
placeholder for connecting masters and slaves.  

Bit movement engine is a complex design and requires high-
quality verification. High-quality verification means driving all 
possible types of input, checking the bit movement engine’s 
output against the checker’s expected data, collecting coverage 
data to analyze holes in the stimulus, and filling the holes. 
Doing this would give confidence that the design is solid.  

Verification is carried out using UVM [3].  UVM is a 
framework based on System Verilog. It provides a standard way 
to build a test bench that's reusable.  

2. Design Under Test 
Bit movement engine implements a state machine [4]. This 

state machine has 10 states and each state performs a unique set 
of operations. Further, the bit movement engine has two 
interfaces: master interface and slave interface. The master 
interface is used to talk to the memory slave for reading and 
writing data. The slave interface is used by the test bench to 
write data to registers that instruct the bit movement engine 
about the next operation that it has to carry. Table 1 talks about 
the bit movement engine’s interface signals. 

 
Table 1 

Bit movement engine interface 
sRW Read write register interface for slave 
sSEL Indicates slave selected 
sADDR Indicates slave address 
sWDATA Slave write data 
sRDATA Slave read data 
mADDR 30 bits master word address 
mWDATA Write data from master interface 
mRDATA Read data to the master interface 
mRW Read write register interface for master 
mREQ Data transfer request from the master 
mHOLD Hold the data transfer in the pipeline 
DONE Indicates operation is completed 

 
Table 2 talks about the control registers in the bit movement 

engine. These registers are written by the testbench through the 
AHB fabric, AHB bridge, and the slave interface of the bit 
movement engine. The source address is decoded from register 
0 and register 1. Block length is decoded from register 1. The 
destination address is decoded from register 2 and register 3. 
Register 4 is written by the testbench to start the bit movement 
engine.  

Figure 1 shows the state diagram implemented in the bit 
movement engine. In the first state which is the ‘address 
decode’ state, the testbench writes to the bit movement engine’s 
registers. This state waits for the start bit to go high. One start 
bit is written, the state machine enters the ‘address 
computation’ state where the source address, destination 
address, and block length are decoded. In the ‘read to FIFO’ 
(First In First Out) state, 4 double words are read starting from 
the double word source address is pointing to. Next, the state 
machine moves to the ‘compare offset state’ where the source 
address and destination offsets are analyzed to determine the 
need for shifting the source data to align with the destination 
offset. Also, the block length with the destination offset is 
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analyzed to determine if the source data fits in a single double 
word. Based on these analyses state machine’s next state is 
determined. 

 

 
Fig. 1.  Bit movement engine state diagram 

 
The state machine moves to the ‘compute for corner case’ 

state for cases where the bits to be moved fit in a single double 
word in the destination. This requires creating three masks and 
applying them to the data before the destination address offset, 
after the destination address offset until the block length, and 
beyond this. The State machine moves to the “compute for 
normal cases” state for cases where the bits to be moved do not 

fit in a single double word. In this state, the bits to be moved 
are properly aligned to the destination offset and write control 
signals are set up. ‘Write first data’ state carries the second 
cycle of write. “Write intermediate data” is the state where all 
the bits present between the first double word and the last 
double word are written. This state uses funnel shifters to align 
the data. The last double word is written in the “write last data” 
state. Once the last data is written ‘done’ signal is asserted for 
a cycle to indicate that the bit movement is complete. 

AHB bridge plays the role of translating AHB requests to 
requests that the bit movement block can sample [5]. Table 3 
shows the list of AHB signals. AHB transfer starts with 
HTRANS being NONSEQ. In this paper AHB bridge and fabric 
only supports NONSEQ transfers.  NONSEQ is a single 
transfer of read or write. Read and write transfers have two 
phases: control phase and data phase. HADDR along with other 
control signals are sampled in the control phase. In the 
following phase, HRDATA and HWDATA are sampled. Slave 
can choose to delay the transfer by de-asserting the HREADY 
signal. 

AHB fabric is designed to be a placeholder for an arbiter to 
arbitrate requests from different masters and slaves. With the 
bit movement block being the only slave connected to the fabric 
there is no need for an arbiter within the scope of this paper.  

Fabric is designed to receive a pointer to the memory location 
from where it can fetch the registers for the bit movement block 
and a pointer to the next set of registers. It has a simple state 
machine to do this operation. Fabric is responsible for writing 
the control registers in the bit movement engine and starting the 
operation. After the engine is done fabric provides new control 
registers for the engine. 

3. Testbench 
The testbench is used to drive stimulus to the design and 

mimic the memory slave. The testbench writes the first pointer 
to the fabric and responds to the read and write requests to the 
memory slave. The UVM-based testbench consists of all the 
components needed to make a fully functional testbench: test, 

Table 2 
Bit movement engine registers 

Addr Function Comments 
0 Source addr low Lower 32 bits of a ‘bit’ address 
1 Source addr high, Block length Upper bits of ‘source bit address’ (5 bits) Block length (27 bits) in ‘bits’ 
2 Destination addr low Lower 32 bits of a ‘bits’ address 
3 Destination addr high Upper 5 bits of ‘destination bit address’. Lower 27 bits are unused. 
4 Start and status Upper 29 bits unused. Error, busy, START. Write START bit to a ‘1’ to enable operation 

 
Table 3 

List of AHB signals 
Signal Functionality 

HCLK Clock signal for the bus 
HRESET Active low reset signal for the bus 
HTRANS 2-bit signal indicating type of transfer 
HWRITE Indicates whether it’s a read (high) or write (low) operation 
HBUSREQ Request to access the bus 
HGRANT Indicates ownership of the bus 
HREADY Indicates status of the transfer 
HWDATA Transfers data from master to slave during the write operation 
HADDR 32-bit address bus 
HRDATA Transfers data from slave to master during the read operation 
HSEL Indicates which slave is selected from the current transfer 
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environment, scoreboard, agent, driver, monitor, sequencer, 
and sequence [6]. Although UVM provides a number of phases 
that the test bench can use, this test bench uses the absolutely 
essential phases for building a fully functional UVM testbench: 
build phase, connect phase, and run phase. Figure 2 shows a 
simple block diagram of how each block discussed in this paper 
is connected. 

 

 
Fig. 2.  Block diagram to show the connections 

 
One of the main advantages of using UVM is reusability. For 

example, the scoreboard used in the verification of the bit 
movement engine can be used in the chip-level test bench. 
When simulations are done on the chip level, the scoreboard of 
the bit movement block will be active and checks the correct 
behavior of the bit movement engine. Each component of UVM 
can be reused like a plug-and-play. Sometimes an entire agent 
can be picked and instantiated in an environment of a different 
test bench. Communication between these components is 
established by connecting TLM/analysis ports in one 
component to imp/export in another component.  

The sequence plays a vital role in creating test cases. In this 
case, generating bit movement block registers, link registers, 
and memory blocks for the addresses around the source and 
destination addresses. Once the memory blocks are generated it 
is passed to the driver and the scoreboard. The driver acts as a 
memory slave responding to all the read and write requests of 
the bit movement engine. The scoreboard uses the link register 
to initiate its reference memory manipulation. Once the bit 
movement engine is done scoreboard uses its reference memory 
to check against the memory blocks sent by the driver. If the 
data doesn’t match an error is thrown. 

The bit movement block exercises different logic depending 
on the block length, source address offset, and destination 
address value. The test cases generated by the sequence should 
cover all the possible scenarios. Covering all scenarios gives the 
confidence that the bit movement engine is robust and can move 
variable bits of data from any address offset to any other address 
offset. Further, code coverage is run to determine which logic 
is not exercised. Test stimulus is improved based on the code 
coverage report. Dead code from the design is removed if the 
logic is unreachable.  

Along with verifying the correct functionality of the bit 
movement engine, verifying the performance is important [7]. 
Without performance verification, IP works slow and in turn, 
the SoC works slow. Bit movement is allowed (block 
length)/16+10 clocks for completion of data manipulation. This 
check proves that the bit movement engine is performing the 
data manipulation well within the provided cycles. 

4. Result 
The UVM-based testbench generated 20 different test cases 

covering different block lengths, source address offset and 
destination address offset. The scoreboard verified all the 
modified memory blocks for their correctness. Figure 3 shows 
the UVM report of the simulation. The bit movement block 
passed the performance checks for all the test cases. Figure 4 
shows the performance report of the bit movement block for 
various test cases. 

 
Fig. 3.  UVM report 

 
Fig. 4.  Performance report 

5. Conclusion 
This paper presented design and verification of a bit 

movement engine. 
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