
International Journal of Research in Engineering, Science and Management
Volume 5, Issue 10, October 2022
https://www.ijresm.com | ISSN (Online): 2581-5792

*Corresponding author: krishnakanthkm@gmail.com

1

Abstract: An SoC (System on Chip) comprises many functional

units. These functional units consist of many lower-level
components such as comparators, shifters, adders, etc. In this
paper, we talk about one of these functional units called bit
movement engine. A bit movement engine moves chunks of data
from one memory location to another. Bit movement engine is
designed to move bits starting from any location in the memory
block and it can move a variable number of bits. At the core of the
bit movement engine is a funnel shifter. Bit movement engine
communicates to memory through an AHB (AMBA High-
Performance Bus) fabric. Any functional unit developed requires
a thorough verification to certify that the functional unit behaves
as expected. The functionality of the bit movement engine is
modeled in the test bench and the behavior of the bit movement
engine is checked. The bit movement engine is verified using UVM
(Universal Verification Methodology).

Keywords: SoC, AMBA, AHB, UVM, Bit movement engine, IP

(Intellectual property), GPUs (Graphics Processing Unit).

1. Introduction
SoC consists of many IPs. A bit movement engine is one such

IP that moves bits of data on a word-oriented bus. Bit movement
engines can move any number of bits to any non-overlapping
location in the memory. Since this engine can operate on a bit
level and can move variable lengths of data, the design is quite
complex. GPUs that do a massive amount of data manipulation
and memory alteration have IPs that do a similar job as the bit
movement engine [1].

On many occasions, IPs have interfaces that are different
from the interfaces of the IPs they talk to. In these cases, bridges
are used to convert one protocol to another. This enables the
reuse of IPs. Bit movement engine uses a bridge to convert its
native interface protocol to AHB protocol [2]. AHB bridge
further talks to a fabric. Fabric is typically connected to multiple
masters and slaves. Fabric is responsible for arbitrating requests
from masters and slaves. In this paper, Fabric acts as a
placeholder for connecting masters and slaves.

Bit movement engine is a complex design and requires high-
quality verification. High-quality verification means driving all
possible types of input, checking the bit movement engine’s
output against the checker’s expected data, collecting coverage
data to analyze holes in the stimulus, and filling the holes.
Doing this would give confidence that the design is solid.

Verification is carried out using UVM [3]. UVM is a
framework based on System Verilog. It provides a standard way
to build a test bench that's reusable.

2. Design Under Test
Bit movement engine implements a state machine [4]. This

state machine has 10 states and each state performs a unique set
of operations. Further, the bit movement engine has two
interfaces: master interface and slave interface. The master
interface is used to talk to the memory slave for reading and
writing data. The slave interface is used by the test bench to
write data to registers that instruct the bit movement engine
about the next operation that it has to carry. Table 1 talks about
the bit movement engine’s interface signals.

Table 1

Bit movement engine interface
sRW Read write register interface for slave
sSEL Indicates slave selected
sADDR Indicates slave address
sWDATA Slave write data
sRDATA Slave read data
mADDR 30 bits master word address
mWDATA Write data from master interface
mRDATA Read data to the master interface
mRW Read write register interface for master
mREQ Data transfer request from the master
mHOLD Hold the data transfer in the pipeline
DONE Indicates operation is completed

Table 2 talks about the control registers in the bit movement

engine. These registers are written by the testbench through the
AHB fabric, AHB bridge, and the slave interface of the bit
movement engine. The source address is decoded from register
0 and register 1. Block length is decoded from register 1. The
destination address is decoded from register 2 and register 3.
Register 4 is written by the testbench to start the bit movement
engine.

Figure 1 shows the state diagram implemented in the bit
movement engine. In the first state which is the ‘address
decode’ state, the testbench writes to the bit movement engine’s
registers. This state waits for the start bit to go high. One start
bit is written, the state machine enters the ‘address
computation’ state where the source address, destination
address, and block length are decoded. In the ‘read to FIFO’
(First In First Out) state, 4 double words are read starting from
the double word source address is pointing to. Next, the state
machine moves to the ‘compare offset state’ where the source
address and destination offsets are analyzed to determine the
need for shifting the source data to align with the destination
offset. Also, the block length with the destination offset is

Design and Verification of a Bit Movement Engine
Krishnakanth Katteri Mahadeva Murthy*

Department of Electrical Engineering, San Jose State University, San Jose, USA

Murthy et al. International Journal of Research in Engineering, Science and Management, VOL. 5, NO. 10, OCTOBER 2022 2

analyzed to determine if the source data fits in a single double
word. Based on these analyses state machine’s next state is
determined.

Fig. 1. Bit movement engine state diagram

The state machine moves to the ‘compute for corner case’

state for cases where the bits to be moved fit in a single double
word in the destination. This requires creating three masks and
applying them to the data before the destination address offset,
after the destination address offset until the block length, and
beyond this. The State machine moves to the “compute for
normal cases” state for cases where the bits to be moved do not

fit in a single double word. In this state, the bits to be moved
are properly aligned to the destination offset and write control
signals are set up. ‘Write first data’ state carries the second
cycle of write. “Write intermediate data” is the state where all
the bits present between the first double word and the last
double word are written. This state uses funnel shifters to align
the data. The last double word is written in the “write last data”
state. Once the last data is written ‘done’ signal is asserted for
a cycle to indicate that the bit movement is complete.

AHB bridge plays the role of translating AHB requests to
requests that the bit movement block can sample [5]. Table 3
shows the list of AHB signals. AHB transfer starts with
HTRANS being NONSEQ. In this paper AHB bridge and fabric
only supports NONSEQ transfers. NONSEQ is a single
transfer of read or write. Read and write transfers have two
phases: control phase and data phase. HADDR along with other
control signals are sampled in the control phase. In the
following phase, HRDATA and HWDATA are sampled. Slave
can choose to delay the transfer by de-asserting the HREADY
signal.

AHB fabric is designed to be a placeholder for an arbiter to
arbitrate requests from different masters and slaves. With the
bit movement block being the only slave connected to the fabric
there is no need for an arbiter within the scope of this paper.

Fabric is designed to receive a pointer to the memory location
from where it can fetch the registers for the bit movement block
and a pointer to the next set of registers. It has a simple state
machine to do this operation. Fabric is responsible for writing
the control registers in the bit movement engine and starting the
operation. After the engine is done fabric provides new control
registers for the engine.

3. Testbench
The testbench is used to drive stimulus to the design and

mimic the memory slave. The testbench writes the first pointer
to the fabric and responds to the read and write requests to the
memory slave. The UVM-based testbench consists of all the
components needed to make a fully functional testbench: test,

Table 2
Bit movement engine registers

Addr Function Comments
0 Source addr low Lower 32 bits of a ‘bit’ address
1 Source addr high, Block length Upper bits of ‘source bit address’ (5 bits) Block length (27 bits) in ‘bits’
2 Destination addr low Lower 32 bits of a ‘bits’ address
3 Destination addr high Upper 5 bits of ‘destination bit address’. Lower 27 bits are unused.
4 Start and status Upper 29 bits unused. Error, busy, START. Write START bit to a ‘1’ to enable operation

Table 3

List of AHB signals
Signal Functionality

HCLK Clock signal for the bus
HRESET Active low reset signal for the bus
HTRANS 2-bit signal indicating type of transfer
HWRITE Indicates whether it’s a read (high) or write (low) operation
HBUSREQ Request to access the bus
HGRANT Indicates ownership of the bus
HREADY Indicates status of the transfer
HWDATA Transfers data from master to slave during the write operation
HADDR 32-bit address bus
HRDATA Transfers data from slave to master during the read operation
HSEL Indicates which slave is selected from the current transfer

Murthy et al. International Journal of Research in Engineering, Science and Management, VOL. 5, NO. 10, OCTOBER 2022 3

environment, scoreboard, agent, driver, monitor, sequencer,
and sequence [6]. Although UVM provides a number of phases
that the test bench can use, this test bench uses the absolutely
essential phases for building a fully functional UVM testbench:
build phase, connect phase, and run phase. Figure 2 shows a
simple block diagram of how each block discussed in this paper
is connected.

Fig. 2. Block diagram to show the connections

One of the main advantages of using UVM is reusability. For

example, the scoreboard used in the verification of the bit
movement engine can be used in the chip-level test bench.
When simulations are done on the chip level, the scoreboard of
the bit movement block will be active and checks the correct
behavior of the bit movement engine. Each component of UVM
can be reused like a plug-and-play. Sometimes an entire agent
can be picked and instantiated in an environment of a different
test bench. Communication between these components is
established by connecting TLM/analysis ports in one
component to imp/export in another component.

The sequence plays a vital role in creating test cases. In this
case, generating bit movement block registers, link registers,
and memory blocks for the addresses around the source and
destination addresses. Once the memory blocks are generated it
is passed to the driver and the scoreboard. The driver acts as a
memory slave responding to all the read and write requests of
the bit movement engine. The scoreboard uses the link register
to initiate its reference memory manipulation. Once the bit
movement engine is done scoreboard uses its reference memory
to check against the memory blocks sent by the driver. If the
data doesn’t match an error is thrown.

The bit movement block exercises different logic depending
on the block length, source address offset, and destination
address value. The test cases generated by the sequence should
cover all the possible scenarios. Covering all scenarios gives the
confidence that the bit movement engine is robust and can move
variable bits of data from any address offset to any other address
offset. Further, code coverage is run to determine which logic
is not exercised. Test stimulus is improved based on the code
coverage report. Dead code from the design is removed if the
logic is unreachable.

Along with verifying the correct functionality of the bit
movement engine, verifying the performance is important [7].
Without performance verification, IP works slow and in turn,
the SoC works slow. Bit movement is allowed (block
length)/16+10 clocks for completion of data manipulation. This
check proves that the bit movement engine is performing the
data manipulation well within the provided cycles.

4. Result
The UVM-based testbench generated 20 different test cases

covering different block lengths, source address offset and
destination address offset. The scoreboard verified all the
modified memory blocks for their correctness. Figure 3 shows
the UVM report of the simulation. The bit movement block
passed the performance checks for all the test cases. Figure 4
shows the performance report of the bit movement block for
various test cases.

Fig. 3. UVM report

Fig. 4. Performance report

5. Conclusion
This paper presented design and verification of a bit

movement engine.

Acknowledgment
This project was done under the guidance of Professor Morris

Jones at San Jose State University. I am thankful to Professor
Morris Jones for his guidance and support and to San Jose State
University for providing all the facilities that were necessary for
the project.

References
[1] H. Jin, D. Jeong, T. Park, J. H. Ko and J. Kim, "Multi-Prediction

Compression: An Efficient and Scalable Memory Compression
Framework for GP-GPU," in IEEE Computer Architecture Letters, vol.
21, no. 2, pp. 37-40, 1 July-Dec. 2022.

[2] AMBA specification (rev 2.0), 1999.
[3] "IEEE Standard for Universal Verification Methodology Language

Reference Manual," in IEEE Std 1800.2-2017, vol., no., pp.1-472, 26 May
2017.

Murthy et al. International Journal of Research in Engineering, Science and Management, VOL. 5, NO. 10, OCTOBER 2022 4

[4] E. Clifford and Cummings, "Coding and Scripting Techniques for FSM
Designs with Synthesis-Optimized Glitch-Free Outputs," SNUG
(Synopsys Users Group Boston MA 2000) Proceedings, September 2000.

[5] V. T. Mahendra, D. S. Shylu Sam, A. J. Hernisha and A. J. Atchaya,
"Design of highly reusable interface for AHB verification module," 2022
6th International Conference on Devices, Circuits and Systems (ICDCS),
2022, pp. 357-359.

[6] W. Ni and J. Zhang, "Research of reusability based on UVM verification,"
2015 IEEE 11th International Conference on ASIC (ASICON), 2015, pp.
1-4.

[7] P. Bose and J. A. Abraham, "Performance and functional verification of
microprocessors," VLSI Design 2000. Wireless and Digital Imaging in the
Millennium. Proceedings of 13th International Conference on VLSI
Design, 2000, pp. 58-63.

	1. Introduction
	2. Design Under Test
	3. Testbench
	4. Result
	5. Conclusion
	Acknowledgment
	References

