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Abstract: The study of sequence spaces has been a great interest 

recently. A number of books have been published in this area over 

the last few years. In addition, the sequence space has also been 

widely applied to various fields. The Cesàro Sequence Space of an 

Absolute type also one of the sequence space that being studied 

recently. It was introduced by a mathematician named J.S. Shue 

back in 1970. In this particular article, we give the proof of Cesàro 

Sequence Space of an Absolute type, with norm defined by ||𝒙|| =

(∑ (
𝟏

𝒏
∑ |𝒙𝒌|𝒏

𝒌=𝟏 )
𝒑

∞
𝒏=𝟏 )

𝟏

𝒑
 for any real number 𝒑 that satisfy 𝟏 ≤ 𝒑 <

∞ and ||𝒙||
𝒄𝒆𝒔∞

= 𝐬𝐮𝐩 {
𝟏

𝒏
∑ |𝒙𝒌|𝒏

𝒌=𝟏 , 𝒏 ∈ ℕ} being a Banach space.. 

We also conduct the proof of Cesàro Sequence Space of an 

Absolute type is a BK-space, FK-space, having the AK-property 

and also a solid sequence space.  

 
Keywords: Cesaro Sequence Space of an Absolute Type, Cesaro 

Sequence Space, Absolute type of sequence space, Solid Sequence 

Space, BK-space, FK-space, AK-property, Banach Space, 

Sequence space. 

1. Introduction 

Sequence space is a set or collection whose members are 

sequences where the sequence itself is a function that maps the 

set of all natural numbers ℕ to a set 𝕊 [1]. One of the sequence 

spaces that has been widely studied is Cesaro Sequence Space 

of an Absolute type, which is symbolized by 𝑐𝑒𝑠𝑝. Cesaro 

Sequence Space of an Absolute type is the set of all sequences 

of real numbers (𝑥𝑛) where the series ∑ (∑
|𝑥𝑛|

𝑛

𝑛
𝑖=1 )

𝑝

𝑛∈ℕ < ∞ 

ofr a real numbers 𝑝 with 1 ≤ 𝑝 < ∞. And for 𝑝 = ∞, Cesaro 

Sequence Space of an Absolute type is defined as the collection 

of all sequences of real numbers such that the value of ∑
|𝑥𝑛|

𝑛

𝑛
𝑖=1  

is finite for all natural numbers 𝑛. 

At first, Dutch Mathematical Society publicly announces a 

problem regarding the duals of Cesaro Sequence Space in 1968. 

Two years later, a mathematician named Shiue [2] successfully 

solves the problem through an article in 1970. Leibowits [3] and 

Jager [4] then also investigate some properties of Cesaro 

Sequence Space. In 1978, Ng and Lee [5] introduces the non-

absolute type of Cesaro Sequence Space that denoted by 𝑋𝑝. 

Sequence Space 𝑋𝑝 denotes the set off all real number 

sequences that satisfy ∑ |∑
𝑥𝑛

𝑛

𝑛
𝑖=1 |

𝑝

𝑛∈ℕ < ∞ for a real number 𝑝 

greater than 1 whilst for 𝑝 = ∞ they defined 𝑋∞ as a collection  

 

of sequences which the value of |∑
𝑥𝑛

𝑛

𝑛
𝑖=1 | is finite for any 

natural number 𝑛. After that, Lee [6] studied about the 𝛼-dual 

of 𝑐𝑒𝑠𝑝 and 𝛽-dual of 𝑋𝑝. 

Other research regarding the structure of Cesaro Sequence 

Space have also been studied by another researchers. Such as 

geometry properties of 𝑐𝑒𝑠𝑝 by Saejung [7], topological and 

algebraic properties of Cesaro Sequence Space that defined by 

modulus function [8], and the structure of Cesaro Function 

Space that related with Cesaro Sequence Space, Copson 

Function Space, and Copson Sequence Space [9]. 

In addition, the implementation of sequence space in various 

fields have also been studied lately. For example, Talo & Başar 

[10] studied the sequences space using fuzzy numbers. 

Malkowsky et al. [11] studied the implementation of Cesaro 

Sequence Space in Crystallography and another space that 

related to Cesaro Sequence Space. Some application of 

sequence space in clustering have been studied as well [12]. 

Recently, Khan et al. [13] made intuitionistic fuzzy distance 

measure based on Cesaro Paranormed Sequence Space. 

Because of the benefit of the sequence spaces, we need to do 

more observation regarding the properties of sequences space 

especially Cesaro Sequence Space of an Absolute type. In this 

particular article, the proof of Cesaro Sequence Space of an 

Absolute type being a solid or normal sequence space as well 

as being a BK-space satisfying AK-property are being 

discussed. 

2. Literature Survey 

In this paper, the notation (𝑋, ||⦁||) will be used to denote a 

space 𝑋 that equipped with norm function  ||⦁||.  If there is some 

ambiguity, we will denote the norm of a space 𝑋 by ||𝑥||
𝑋

 for 

every 𝑥 in 𝑋. In order to be called a norm space, the norm 

function in 𝑋 should be non-negative, close under scalar 

multiplication, satisfy the triangle inequality, and equal to zero 

if and only if 𝑥 is the zero element of 𝑋. Before going to the 

main result, we will introduce some definition of Cesaro 

Sequence Space of an Absolute type, Banach space, solid 

sequence space, BK-space and AK-property. 

A. Cesaro Sequence Space of an Absolute Type 

The definition of Cesaro Sequence Space of an Absolute type 
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will be stated in Definition 2.1. 

 

Definition 2.1 [6] Cesaro Sequence Space of an Absolute type, 

denoted by 𝑐𝑒𝑠𝑝, is a set of sequence of real numbers (𝑥𝑛) that 

satisfy  

𝑐𝑒𝑠𝑝 = {(𝑥𝑛) ∶  ∑ (
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

)

𝑝∞

𝑛=1

< ∞} 

where 𝑝 is a real numbers greater than or equal to 1. While for 

𝑝 = ∞ the definition of Cesaro Sequence Space of an Absolute 

type is 

𝑐𝑒𝑠∞ = {(𝑥𝑛): 
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

< ∞, 𝑥𝑛 ∈ ℝ ∀𝑛 ∈ ℕ  } 

Both 𝑐𝑒𝑠𝑝 and 𝑐𝑒𝑠∞ are said to be sequence space of an 

absolute type because for every sequence of real number (𝑥𝑛) ∈
𝑐𝑒𝑠𝑝 (or 𝑐𝑒𝑠∞), implies the sequence (𝑥𝑛) also in 𝑐𝑒𝑠𝑝 (or 

𝑐𝑒𝑠∞). To have a better understanding in Cesaro Sequence 

Space of an Absolute type, here are some example of the 

element. 

 

Example 2.2 The sequence 𝑋 = (
1

𝑛
−

1

𝑛+1
) is an element of 

𝑐𝑒𝑠∞ and 𝑐𝑒𝑠𝑝 for every real numbers 𝑝 such that 1 < 𝑝 < ∞. 

Proof: 

Notice that 

1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

=
1

𝑛
∑ |

1

𝑘
−

1

𝑘 + 1
|

𝑛

𝑘=1

 

=
1

𝑛
[1 −

1

2
+

1

2
−

1

3
+ ⋯ +

1

𝑛
−

1

𝑛 + 1
] 

=
1

𝑛
[1 −

1

𝑛 + 1
] 

=
1

𝑛
[

𝑛

𝑛 + 1
] 

=
1

𝑛 + 1
 

We can see that for every real numbers 𝑝 greater than 1, we 

have 

∑ (
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

)

𝑝∞

𝑛=1

= ∑ (
1

𝑛 + 1
)

p∞

𝑛=1

< ∞ 

and for every 𝑛 being a natural number, the value of 
1

𝑛+1
 is 

finite. Hence 𝑋 ∈ 𝑐𝑒𝑠∞ and 𝑋 ∈ 𝑐𝑒𝑠𝑝 for a real number 𝑝 where 

1 < 𝑝 < ∞.  

 

Example 2.3 The sequence 𝑋 = (𝑚, 0,0,0, … ) is an element of 

𝑐𝑒𝑠𝑝 for every real number 𝑝 ∈ (1, ∞) and also an element of 

𝑐𝑒𝑠∞ for 𝑚 ∈ ℝ. 

Proof: 

Suppose 𝑚 is any real number. Then ∀𝑛 ∈ ℕ, we have 

1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

=
1

𝑛
[𝑚] < ∞ 

Moreover,  

∑ (
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

)

𝑝∞

𝑛=1

= ∑ (
𝑚

𝑛
)

𝑝
∞

𝑛=1

= mp ∑ (
1

𝑛
)

𝑝∞

𝑛=1

< ∞ 

Therefore, 𝑋 is an element of Cesaro Sequence Space of an 

Absolute type for any real numbers 𝑝 that satisfy 1 < 𝑝 < ∞ 

and also for 𝑝 = ∞ 

 

Example 2.4 The sequence (0,0,0, … ) ∈ 𝑐𝑒𝑠𝑝 for any real 

number 𝑝 satisfy 1 ≤ 𝑝 < ∞  and for 𝑝 = ∞. 

Proof: 

We can see that  

∑ (
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

)

𝑝∞

𝑛=1

= ∑ (
1

𝑛
∑|0|

𝑛

𝑘=1

)

𝑝∞

𝑛=1

= ∑(0)p

∞

𝑛=1

= 0 

And also for every 𝑛 being a natural number, the value of 
1

𝑛
∑ |𝑥𝑘|𝑛

𝑘=1  is equal to 0. In consequence, (0,0,0, … ) is an 

element of 𝑐𝑒𝑠𝑝 whenever 𝑝 ∈ [1, ∞) and (0,0,0, … ) ∈ 𝑐𝑒𝑠∞. 

 

Example 2.5 The constant sequence (𝑥𝑛) = (𝑚, 𝑚, 𝑚, … ) of a 

real numbers 𝑚 where 𝑚 ≠ 0 is in 𝑐𝑒𝑠∞ but not an element of 

𝑐𝑒𝑠𝑝 where 𝑝 is any real numbers greater than or equal to 1. 

Proof: 

Notice that ∀𝑛 ∈ ℕ, the value of 
1

𝑛
∑ |𝑚|𝑛

𝑘=1 =
1

𝑛
[𝑚𝑛] =

𝑚 < ∞. Hence (𝑥𝑛) = (𝑚, 𝑚, 𝑚, … ) for a non-zero real 

number 𝑚 is an element of 𝑐𝑒𝑠𝑝. On the other hand, we have 

∑ (
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

)

p∞

𝑛=1

 

= ∑ (
1

𝑛
∑|𝑚|

𝑛

𝑘=1

)

p∞

𝑛=1

 

= ∑ (
1

𝑛
[𝑚𝑛])

p∞

𝑛=1

 

= ∑ mp

∞

𝑛=1

 

= ∞ 
Therefore, (𝑥𝑛) is not in 𝑐𝑒𝑠𝑝 for any real number 𝑝 

whenever 1 ≤ 𝑝 < ∞.  

B. Some Definition of Properties in Sequence Space 

Definition 2.6 [14] A norm space (𝑋, ||⦁||) is said to be a 

Banach space iff (𝑋, ||⦁||) is complete, that is every Cauchy 

Sequence on 𝑋 is convergent.  

 

Definition 2.7 [15] Given any sequence space 𝑋. 𝑋 is said to be 

a solid (normal) sequence space iff for every (𝑥𝑛) ∈ 𝑋 implies 

(𝛼𝑛𝑥𝑛) also an element of 𝑋 whenever (𝛼𝑛) be a sequence of 

scalar with |𝑎𝑛| ≤ 1, ∀𝑛 ∈ ℕ. 

 

Definition 2.8 [16],[17] A sequence space 𝑋 is said to be a BK-

space (Banach Coordinate Space) iff 𝑋 satisfy these following 

condition 

a. 𝑋 is a Banach Space. 

b. Function 𝑝𝑛: 𝑋 → ℂ  is continuous for every natural 

number 𝑛 where 𝑝𝑛(𝑥) = 𝑥𝑛 and 𝑥 = (𝑥𝑛) ∈ 𝑋. 

 

Lemma 2.9 [18] Every BK-space is an FK-space. 

 

Definition 2.10 [18] Given any FK-Space 𝑋. If every sequence 

𝑥 ∈ 𝑋 have a unique representation 𝑥 = ∑ 𝑥𝑘𝑒𝑘
(𝑘)

𝑘∈ℕ  where 
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𝑒(𝑘) is a sequence which 𝑒𝑛
(𝑘)

 is equal to 1 if 𝑛 = 𝑘 and equal 

to 0 whenever 𝑛 ≠ 𝑘. In other word, 𝑙𝑖𝑚
𝑛→∞

∑ 𝑥𝑘𝑒(𝑘)𝑛
𝑘=1 = 𝑥 or 

𝑋 is having the Schauder Basis. 

3. Main Result  

Theorem 3.1 Cesaro Sequence Space of an Absolut type 𝑐𝑒𝑠𝑝 

for every real number 𝑝 satisfying 1 ≤ 𝑝 < ∞ equipped with 

norm function 

||𝑋||
𝑐𝑒𝑠𝑝

= (∑ (
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

)

𝑝∞

𝑛=1

)

1
𝑝

 

is a Banach space. 

Proof: 

a. Suppose 𝑋 = (𝑥𝑛) ∈ 𝑐𝑒𝑠𝑝. Since |𝑥𝑘| ≥ 0 for every 𝑘 ∈

ℕ, then we have  

0 ≤ ∑ (
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

)

𝑝∞

𝑛=1

< ∞ 

0 ≤ (∑ (
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

)

𝑝∞

𝑛=1

)

1
𝑝

< ∞ 

0 ≤ ||𝑋||
𝑐𝑒𝑠𝑝

< ∞ 

 

 

b. (⇒) If 𝑋 = (0,0,0, … ) then  

||𝑋||
𝑐𝑒𝑠𝑝

= (∑ (
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

)

𝑝∞

𝑛=1

)

1
𝑝

= (∑ (
1

𝑛
∑ 0

𝑛

𝑘=1

)

𝑝∞

𝑛=1

)

1
𝑝

 

⇔ (∑ 0𝑝

∞

𝑛=1

)

1
𝑝

= 0 

(⇐) Conversely, assume that 𝑥 ≠ 𝟎 and ||𝑥||
𝑐𝑒𝑠𝑝

= 0, then 

there exist 𝑘1 ∈ ℕ such that 𝑥𝑘1 is the first non-zero term in 

𝑥. Therefore  

||𝑥||
𝑐𝑒𝑠𝑝

= ∑ (
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

)

𝑝∞

𝑛=1

= ∑ (
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

)

𝑝∞

𝑛=𝑘1

> 0 

which contradict the fact that ||𝑥||
𝑐𝑒𝑠𝑝

= 0. Hence ||𝑥||
𝑐𝑒𝑠𝑝

=

0 if and only if 𝑥 = 𝟎.  

c. Given any real number 𝛼, then  

||𝛼𝑋||
𝑐𝑒𝑠𝑝

= (∑ (
1

𝑛
∑|𝛼𝑥𝑘|

𝑛

𝑘=1

)

𝑝∞

𝑛=1

)

1
𝑝

 

= (∑ (
1

𝑛
∑|𝛼||𝑥𝑘|

𝑛

𝑘=1

)

𝑝∞

𝑛=1

)

1
𝑝

 

= (∑|𝛼|𝑝 (
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

)

𝑝∞

𝑛=1

)

1
𝑝

 

= |𝛼| (∑ (
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

)

𝑝∞

𝑛=1

)

1
𝑝

 

= |𝛼|||𝑋||
𝑐𝑒𝑠𝑝

 

 

d. According to triangle inequality, we have |𝑥𝑘 + 𝑦𝑘| <
|𝑥𝑘| + |𝑦𝑘| for any real numbers 𝑥𝑘 and 𝑦𝑘 . Hence for 

𝑋, 𝑌 ∈ 𝑐𝑒𝑠𝑝 we have 

||𝑋 + 𝑌||
𝑐𝑒𝑠𝑝

= (∑ (
1

𝑛
∑|𝑥𝑘 + 𝑦𝑘|

𝑛

𝑘=1

)

𝑝∞

𝑛=1

)

1
𝑝

≤ (∑ (
1

𝑛
∑(|𝑥𝑘| + |𝑦𝑘|)

𝑛

𝑘=1

)

𝑝∞

𝑛=1

)

1
𝑝

  

And by using Minkowski inequality in sum, we get  

(∑ (
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

+
1

𝑛
∑|𝑦𝑘|

𝑛

𝑘=1

)

𝑝∞

𝑛=1

)

1
𝑝

  

≤ (∑ (
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

)

𝑝∞

𝑛=1

)

1
𝑝

+ (∑ (
1

𝑛
∑|𝑦𝑘|

𝑛

𝑘=1

)

𝑝∞

𝑛=1

)

1
𝑝

 

= ||𝑋||
𝑐𝑒𝑠𝑝

+ ||𝑌||
𝑐𝑒𝑠𝑝

 

 

e. From a, b, c, and d we have that 𝑐𝑒𝑠𝑝 is a norm space. 

Given 𝑋 = (𝑥𝑛) be a Cauchy sequence on 𝑐𝑒𝑠𝑝 where 

𝑥𝑛 = (𝑥𝑛
(𝑘)

). Then for every positive real number 𝜀, there 

exist 𝑁 ∈ ℕ such that any natural numbers 𝑚 and 𝑞 

greater than or equal to 𝑁, we have 

||𝑥𝑚 − 𝑥𝑞||
𝑐𝑒𝑠𝑝

= (∑ (
1

𝑛
∑|𝑥𝑚

(𝑘)
− 𝑥𝑞

(𝑘)
|

𝑛

𝑘=1

)

𝑝∞

𝑛=1

)

1
𝑝

< 𝜀 

⇔ ∑ (
1

𝑛
∑|𝑥𝑚

(𝑘)
− 𝑥𝑞

(𝑘)
|

𝑛

𝑘=1

)

𝑝∞

𝑛=1

< 𝜀𝑝 

That means for every 𝑛 ∈ ℕ, we get 

(
1

𝑛
∑|𝑥𝑚

(𝑘)
− 𝑥𝑞

(𝑘)
|

𝑛

𝑘=1

)

𝑝

< 𝜀𝑝 ⇔
1

𝑛
∑|𝑥𝑚

(𝑘)
− 𝑥𝑞

(𝑘)
|

𝑛

𝑘=1

< 𝜀 

Consequently, the sequence (𝑥(𝑛)) = (𝑥1
(𝑛)

, 𝑥2
(𝑛)

, 𝑥3
(𝑛)

, … ) is 

a Cauchy sequence for any natural number 𝑛. Remember that 

(𝑥(𝑛)) is a Cauchy sequence on ℝ. Since ℝ is a Banach space, 

therefore (𝑥𝑛) is convergent ∀𝑛 ∈ ℕ. Suppose that  𝑥𝑞
(𝑛)

→ 𝑦𝑛 

as 𝑞 → ∞. Then we can construct 𝑦 = (𝑦1 , 𝑦2, 𝑦3, … ). As of 

𝑞 → ∞, we have 

∑ (
1

𝑛
∑|𝑥𝑚

(𝑘)
− 𝑥𝑞

(𝑘)
|

𝑛

𝑘=1

)

𝑝∞

𝑛=1

< 𝜀𝑝 

∑ (
1

𝑛
∑|𝑥𝑚

(𝑘)
− 𝑦𝑘|

𝑛

𝑘=1

)

𝑝∞

𝑛=1

< 𝜀𝑝 

(∑ (
1

𝑛
∑|𝑥𝑚

(𝑘)
− 𝑦𝑘|

𝑛

𝑘=1

)

𝑝∞

𝑛=1

)

1
𝑝

< 𝜀 

||𝑥𝑚 − 𝑦||
𝑐𝑒𝑠𝑝

< 𝜀 

We can conclude that 𝑥𝑚 is convergent to the sequence 𝑦. 

Furthermore, we have 𝑥𝑚 − 𝑦 ∈ 𝑐𝑒𝑠𝑝 and also 𝑥𝑚 ∈ 𝑐𝑒𝑠𝑝 
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therefore 𝑦 = 𝑥𝑚 − (𝑥𝑚 − 𝑦) ∈ 𝑐𝑒𝑠𝑝.  Since (𝑥𝑚) is an 

arbitrary Cauchy sequence in 𝑐𝑒𝑠𝑝. Hence every Cauchy 

sequence is convergent in 𝑐𝑒𝑠𝑝 and 𝑐𝑒𝑠𝑝 is a Banach space.  

 

Theorem 3.2 Cesaro Sequence Space of an Absolut type 𝑐𝑒𝑠∞ 

equipped with norm function 

||𝑋||
𝑐𝑒𝑠∞

= sup
 𝑛∈ℕ

{
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

} 

is a Banach space. 

Proof: 

a. Suppose 𝑋 = (𝑥𝑛) ∈ 𝑐𝑒𝑠∞. Since |𝑥𝑘| ≥ 0 for every 𝑘 ∈
ℕ, then we have  

0 ≤
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

≤ sup {
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

, 𝑛 ∈ ℕ} < ∞ 

⇔ 0 ≤ ||𝑋||
𝑐𝑒𝑠∞

< ∞ 

□ 

b. (⇒) If 𝑋 = (0,0,0, … ) then  

||𝑋||
𝑐𝑒𝑠∞

= sup {
1

𝑛
∑|0|

𝑛

𝑘=1

, 𝑛 ∈ ℕ} = sup{0, ∀ 𝑛 ∈ ℕ} = 0 

(⇐) Conversely, assume that 𝑥 ≠ 𝟎 and ||𝑥||
𝑐𝑒𝑠∞

= 0, then 

there exist 𝑘1 ∈ ℕ such that 𝑥𝑘1 is the first non-zero term in 

𝑥. Therefore  

1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

> 0 

For every 𝑛 > 𝑘1. And so we have  

sup {
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

, 𝑛 ∈ ℕ} > 0 

which contradict the fact that ||𝑥||
𝑐𝑒𝑠∞

= 0. Hence 

||𝑥||
𝑐𝑒𝑠∞

= 0 if and only if 𝑥 = 𝟎.  

c. Given any real number 𝛼, then  

||𝛼𝑋||
𝑐𝑒𝑠∞

= sup {
1

𝑛
∑|𝛼𝑥𝑘|

𝑛

𝑘=1

, 𝑛 ∈ ℕ}

= sup {
1

𝑛
∑|𝛼||𝑥𝑘|

𝑛

𝑘=1

, 𝑛 ∈ ℕ}

= sup {
|𝛼|

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

, 𝑛 ∈ ℕ}

= |𝛼| sup {
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

, 𝑛 ∈ ℕ}

= |𝛼|||𝑋||
𝑐𝑒𝑠∞

 

 

d. According to triangle inequality, we have |𝑥𝑘 + 𝑦𝑘| <
|𝑥𝑘| + |𝑦𝑘| for any real numbers 𝑥𝑘 and 𝑦𝑘 . Hence for 

𝑋, 𝑌 ∈ 𝑐𝑒𝑠𝑝 we have 

||𝑋 + 𝑌||
𝑐𝑒𝑠∞

= sup {
1

𝑛
∑|𝑥𝑘 + 𝑦𝑘|

𝑛

𝑘=1

, 𝑛 ∈ ℕ}

≤ sup {
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

+
1

𝑛
∑|𝑦𝑘|

𝑛

𝑘=1

, 𝑛 ∈ ℕ} 

= sup {
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

, 𝑛 ∈ ℕ} + sup {
1

𝑛
∑|𝑦𝑘|

𝑛

𝑘=1

, 𝑛 ∈ ℕ}

= ||𝑋||
𝑐𝑒𝑠∞

+ ||𝑌||
𝑐𝑒𝑠∞

 

  
e. From a, b, c, and d we have that 𝑐𝑒𝑠∞ is a norm space. 

Given 𝑋 = (𝑥𝑛) be a Cauchy sequence on 𝑐𝑒𝑠∞ where 

𝑥𝑛 = (𝑥𝑛
(𝑘)

). Then for every positive real number 𝜀, there 

exist 𝑁 ∈ ℕ such that any natural numbers 𝑚 and 𝑞 

greater than or equal to 𝑁, we have 

||𝑥𝑚 − 𝑥𝑞||
𝑐𝑒𝑠∞

= sup {
1

𝑛
∑|𝑥𝑚

(𝑘)
− 𝑥𝑞

(𝑘)
|

𝑛

𝑘=1

, 𝑛 ∈ ℕ} < 𝜀 

That means for every 𝑛 ∈ ℕ, we get 

1

𝑛
∑|𝑥𝑚

(𝑘)
− 𝑥𝑞

(𝑘)
|

𝑛

𝑘=1

< 𝜀 

Consequently, the sequence (𝑥(𝑛)) = (𝑥1
(𝑛)

, 𝑥2
(𝑛)

, 𝑥3
(𝑛)

, … ) is 

a Cauchy sequence for any natural number 𝑛. Remember that 

(𝑥(𝑛)) is a Cauchy sequence on ℝ. Since ℝ is a Banach space, 

therefore (𝑥𝑛) is convergent ∀𝑛 ∈ ℕ. Suppose that  𝑥𝑞
(𝑛)

→ 𝑦𝑛 

as 𝑞 → ∞. Then we can construct 𝑦 = (𝑦1 , 𝑦2, 𝑦3, … ). As of 

𝑞 → ∞, we have 

sup {
1

𝑛
∑|𝑥𝑚

(𝑘)
− 𝑥𝑞

(𝑘)
|

𝑛

𝑘=1

, 𝑛 ∈ ℕ} < 𝜀 

sup {
1

𝑛
∑|𝑥𝑚

(𝑘)
− 𝑦𝑘|

𝑛

𝑘=1

, 𝑛 ∈ ℕ} < 𝜀 

||𝑥𝑚 − 𝑦||
𝑐𝑒𝑠∞

< 𝜀 

We can conclude that 𝑥𝑚 is convergent to the sequence 𝑦. 

Furthermore, we have 𝑥𝑚 − 𝑦 ∈ 𝑐𝑒𝑠∞ and also 𝑥𝑚 ∈ 𝑐𝑒𝑠∞ 

therefore 𝑦 = 𝑥𝑚 − (𝑥𝑚 − 𝑦) ∈ 𝑐𝑒𝑠∞.  Since (𝑥𝑚) is an 

arbitrary Cauchy sequence in 𝑐𝑒𝑠∞. Hence every Cauchy 

sequence is convergent in 𝑐𝑒𝑠∞ and 𝑐𝑒𝑠∞ is a Banach space.  

 

Theorem 3.3 Cesaro Sequence Space of an Absolute type (𝑐𝑒𝑠𝑝) 

is a solid (normal) sequence space for every real number 𝑝 

satisfying 1 ≤ 𝑝 < ∞. 

Proof: 

Given any sequence 𝑥 ∈ 𝑐𝑒𝑠𝑝 where 𝑝 is any real number that 

satisfy 1 ≤ 𝑝 < ∞. Suppose (𝑎𝑛) is an arbitrary real sequence 

where |𝑎𝑛| ≤ 1. For every 𝑛 ∈ ℕ we can get 

1

𝑛
∑|𝑎𝑘𝑥𝑘|

𝑛

𝑘=1

=
1

𝑛
∑ |𝑎𝑘||𝑥𝑘|

𝑛

𝑘=1

<
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

 

Therefore  

(∑ (
1

𝑛
∑|𝑎𝑛𝑥𝑘|

𝑛

𝑘=1

)

𝑝∞

𝑛=1

)

1
𝑝

< (∑ (
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

)

𝑝∞

𝑛=1

)

1
𝑝

< ∞ 

Consequently (𝑎𝑛𝑥𝑛) ∈ 𝑐𝑒𝑠𝑝 and 𝑐𝑒𝑠𝑝 is a solid sequence 

space for any real number 𝑝 ∈ [1, ∞). 
 

Theorem 3.4 Cesaro Sequence Space of an Absolute type 

(𝑐𝑒𝑠∞) is a solid (normal) sequence space. 
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Proof: 

Given any sequence 𝑥 ∈ 𝑐𝑒𝑠∞. Suppose (𝑎𝑛) is an arbitrary 

real sequence where |𝑎𝑛| ≤ 1. For every 𝑛 ∈ ℕ we can get 

1

𝑛
∑|𝑎𝑘𝑥𝑘|

𝑛

𝑘=1

=
1

𝑛
∑ |𝑎𝑘||𝑥𝑘|

𝑛

𝑘=1

<
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

 

Therefore  

sup
𝑛∈ℕ

{
1

𝑛
∑|𝑎𝑘𝑥𝑘|

𝑛

𝑘=1

} < sup
𝑛∈ℕ

{
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

} < ∞ 

Hence (𝑎𝑛𝑥𝑛) ∈ 𝑐𝑒𝑠∞ and 𝑐𝑒𝑠∞ is a solid sequence space. 
 

Theorem 3.5 Cesaro Sequence Space of an Absolute type (𝑐𝑒𝑠𝑝) 

is a BK-space for every real number 𝑝 satisfying 1 ≤ 𝑝 < ∞. 

Proof: 

Given an arbitrary natural number 𝑁 and 𝑥 ∈ 𝑐𝑒𝑠𝑝. Then for 

every real number 𝜀 > 0, there exist positive real number 𝛿 =
𝜀

𝑁
 

such that for every 𝑦 ∈ 𝑐𝑒𝑠𝑝 where ||𝑦 − 𝑥||
𝑐𝑒𝑠𝑝

< 𝛿, we have 

||𝑦 − 𝑥||
𝑐𝑒𝑠𝑝

= (∑ (
1

𝑛
∑|𝑦𝑘 − 𝑥𝑘|

𝑛

𝑘=1

)

𝑝∞

𝑛=1

)

1
𝑝

< 𝛿

⇔ ∑ (
1

𝑛
∑|𝑦𝑘 − 𝑥𝑘|

𝑛

𝑘=1

)

𝑝∞

𝑛=1

< 𝛿𝑝 

That means for 𝑛 = 𝑁 we get 

(
1

𝑁
∑|𝑦𝑘 − 𝑥𝑘|

𝑁

𝑘=1

)

𝑝

< 𝛿𝑝 

1

𝑁
∑|𝑦𝑘 − 𝑥𝑘|

𝑁

𝑘=1

< 𝛿 

|𝑦𝑁 − 𝑥𝑁| ≤ ∑|𝑦𝑘 − 𝑥𝑘|

𝑁

𝑘=1

< 𝑁𝛿 

|𝑝𝑁(𝑦) − 𝑝𝑁(𝑥)| < 𝑁 (
𝜀

𝑁
) = 𝜀 

Hence the function 𝑝𝑁: 𝑐𝑒𝑠𝑝 → ℂ where 𝑝𝑁(𝑥) = 𝑥𝑁 is 

continuous for every 𝑁 ∈ ℕ. Since 𝑐𝑒𝑠𝑝 is a Banach space 

(Theorem 3.1), then 𝑐𝑒𝑠𝑝 is a BK-space. The proof is complete. 

 

Theorem 3.6 Cesaro Sequence Space of an Absolute type 

(𝑐𝑒𝑠∞) is a BK-space. 

Proof: 

Given an arbitrary natural number 𝑁 and 𝑥 ∈ 𝑐𝑒𝑠∞. Then for 

every real number 𝜀 > 0, there exist positive real number 𝛿 =
𝜀

𝑁
 

such that for every 𝑦 ∈ 𝑐𝑒𝑠∞ where ||𝑦 − 𝑥||
𝑐𝑒𝑠∞

< 𝛿, we have 

||𝑦 − 𝑥||
𝑐𝑒𝑠∞

= sup
𝑛∈ℕ

{
1

𝑛
∑|𝑦𝑘 − 𝑥𝑘|

𝑛

𝑘=1

} < 𝛿 

That means for 𝑛 = 𝑁 we get 

1

𝑁
∑|𝑦𝑘 − 𝑥𝑘|

𝑁

𝑘=1

< 𝛿 

|𝑦𝑁 − 𝑥𝑁| ≤ ∑|𝑦𝑘 − 𝑥𝑘|

𝑁

𝑘=1

< 𝑁𝛿 

|𝑝𝑁(𝑦) − 𝑝𝑁(𝑥)| < 𝑁 (
𝜀

𝑁
) = 𝜀 

Hence the function 𝑝𝑁: 𝑐𝑒𝑠∞ → ℂ where 𝑝𝑁(𝑥) = 𝑥𝑁 is 

continuous for every 𝑁 ∈ ℕ. Since 𝑐𝑒𝑠∞ is a Banach space 

(Theorem 3.2), then 𝑐𝑒𝑠∞ is a BK-space. The proof is complete. 

 

Corollary 3.7 𝑐𝑒𝑠𝑝 is an FK-space whenever 𝑝 is a real number 

satisfying 1 ≤ 𝑝 < ∞. 

Proof: 

The proof is directly from Theorem 3.5 and Lemma 2.9. 

 

Corollary 3.8 𝑐𝑒𝑠∞ is an FK-space. 

Proof: 

The proof is directly from Theorem 3.6 and Lemma 2.9. 

 

Theorem 3.9 Cesaro Sequence Space of an Absolute type (𝑐𝑒𝑠𝑝) 

have the AK-property for every real number 𝑝 satisfying 1 ≤
𝑝 < ∞. 

Proof: 

From Corollary 3.7 we know that 𝑐𝑒𝑠𝑝 is an FK-space. Given 

an arbitrary 𝑥 = (𝑥𝑛) ∈ 𝑐𝑒𝑠𝑝. Then we have  

||∑ 𝑥𝑘𝑒(𝑘)

𝑟

𝑘=1

− 𝑥||

𝑝

𝑐𝑒𝑠𝑝

= ∑ (
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

)

𝑝∞

𝑛=𝑟+1

 

= ||𝑥||
𝑝

𝑐𝑒𝑠𝑝
− ∑ (

1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

)

𝑝𝑟

𝑛=1

 

Therefore we can construct a sequence (𝑎𝑟) = (𝑏 −

∑ (
1

𝑛
∑ |𝑥𝑘|𝑛

𝑘=1 )
𝑝

𝑟
𝑛=1 ) with 𝑏 = ||𝑥||

𝑝

𝑐𝑒𝑠𝑝
.  We can see that 

∀𝑟 ∈ ℕ we have 0 ≤ 𝑎𝑟 ≤ 𝑏. Also  

𝑎𝑟 = 𝑏 − ∑ (
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

)

𝑝𝑟

𝑛=1

> 𝑏 − ∑ (
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

)

𝑝𝑟+1

𝑛=1

= 𝑎𝑟+1 

Therefore (𝑎𝑟) is bounded and decreasing. Hence it is 

convergent to its infimum which is 0. Consequently, as 𝑟 → ∞ 

we have 

||∑ 𝑥𝑘𝑒(𝑘)

𝑟

𝑘=1

− 𝑥||

𝑝

𝑐𝑒𝑠𝑝

= 0 ⇔ ∑ 𝑥𝑘𝑒(𝑘)

𝑟

𝑘=1

= 𝑥 

Hence 𝑐𝑒𝑠𝑝 have the AK-property. 

 

Theorem 3.10 Cesaro Sequence Space of an Absolute type 

(𝑐𝑒𝑠∞) have the AK-property. 

Proof: 

From Corollary 3.8 we know that 𝑐𝑒𝑠∞ is an FK-space. Given 

an arbitrary 𝑥 = (𝑥𝑛) ∈ 𝑐𝑒𝑠∞. Then we have  

||∑ 𝑥𝑘𝑒(𝑘)

𝑟

𝑘=1

− 𝑥||

𝑐𝑒𝑠∞

= sup
𝑛∈ℕ

{
1

𝑛
∑ |𝑥𝑘|

𝑛

𝑘=𝑟+1

} 

= sup
𝑛∈ℕ

{
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

−
1

𝑛
∑|𝑥𝑘|

𝑟

𝑘=1

} 

Where for 𝑟 ≥ 𝑛 we define 
1

𝑛
∑ |𝑥𝑘|𝑛

𝑘=1 −
1

𝑛
∑ |𝑥𝑘|𝑟

𝑘=1 = 0. 

Therefore, we can construct a sequence (𝑎𝑟) =
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(sup
𝑛∈ℕ

{
1

𝑛
∑ |𝑥𝑘|𝑛

𝑘=1 −
1

𝑛
∑ |𝑥𝑘|𝑟

𝑘=1 }).  We can see that ∀𝑟 ∈ ℕ we 

have  

0 <
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

−
1

𝑛
∑|𝑥𝑘|

𝑟

𝑘=1

<
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

 

⇔ 0 ≤ sup
𝑛∈ℕ

{
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

−
1

𝑛
∑|𝑥𝑘|

𝑟

𝑘=1

} < ||𝑥||
𝑐𝑒𝑠∞

 

⇔ 0 ≤ 𝑎𝑟 ≤ ||𝑥||
𝑐𝑒𝑠∞

 

And also  

𝑎𝑟 = sup
𝑛∈ℕ

{
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

−
1

𝑛
∑|𝑥𝑘|

𝑟

𝑘=1

}

> sup
𝑛∈ℕ

{
1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

−
1

𝑛
∑|𝑥𝑘|

𝑟+1

𝑘=1

} = 𝑎𝑟+1 

Therefore (𝑎𝑟) is bounded and decreasing. Hence it is 

convergent to its infimum which is 0. Consequently, as 𝑟 → ∞ 

we have 

||∑ 𝑥𝑘𝑒(𝑘)

𝑟

𝑘=1

− 𝑥||

𝑝

𝑐𝑒𝑠∞

= 0 ⇔ ∑ 𝑥𝑘𝑒(𝑘)

𝑟

𝑘=1

= 𝑥 

Hence 𝑐𝑒𝑠∞ have the AK-property. 

4. Conclusion  

In this article, we can conclude that Cesaro Sequence Space 

of an Absolute type is a Banach space when equipped with norm 

||𝑋||
𝑐𝑒𝑠𝑝

= (∑ (
1

𝑛
∑ |𝑥𝑘|𝑛

𝑘=1 )
𝑝

∞
𝑛=1 )

1

𝑝
  for any real numbers 𝑝 

satisfying 1 ≤ 𝑝 < ∞ and ||𝑋||
𝑐𝑒𝑠∞

= sup
 𝑛∈ℕ

{
1

𝑛
∑ |𝑥𝑘|𝑛

𝑘=1 } when 

𝑝 = ∞. Furthermore, both 𝑐𝑒𝑠𝑝 and 𝑐𝑒𝑠∞ are also a solid 

sequence space, a BK-space, an FK-space, and having AK-

property. 
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