
International Journal of Research in Engineering, Science and Management

Volume 5, Issue 6, June 2022

https://www.ijresm.com | ISSN (Online): 2581-5792

*Corresponding author: shwetaskumar24@gmail.com

292

Abstract: Face recognition and Face detection techniques have

gained a lot of observation in past few decades. Identifying

criminals, tracking attendance, disease diagnosis, and personal

identification are few applications of face detection and face

recognition. Face recognition requires large computation due to

the dimensional structure of the face and computation cost

increases due to a large number of the image dataset. CUDA has

removed the obstacle by computing image data in parallel rather

than sequentially. The focus of this survey is to study the

techniques used in face detection and recognition using CUDA. As

a result of the research, it was discovered that CUDA allows

processing to be done faster for face detection and face recognition

operations.

Keywords: Face detection, Face recognition, CUDA.

1. Introduction

Face recognition systems have become increasingly popular

in research and development in recent years, especially with the

current advancement of computer technology. Many scholars

found that designing a face recognition model to be an

interesting area, owing to the numerous real-world applications

such as law enforcement, verification, security systems, and

surveillance systems. Furthermore, implementing a face

recognition model is challenging due to its complicated

structure of human face. The approach chosen for face

representation, has a significant impact on part of processing

and memory required for a face recognition system.

Overall, Face detection and recognition are the two com-

ponents. The first technique is implemented to spot the face

before particularly distinguishing the face identity. The initial

step in a face recognition system is face detection. The field of

face detection has provided a strong stride in terms of enhanced

detection accuracy and speed. The integral image, the

AdaBoost algorithm, and the classifier cascade were the three

main methodologies and concepts used in face detection [15].

Although these methods obtained a high detection rate on the

CPU, with the constant increase in image resolution, the CPU

no longer meets its requirements in terms of rapid face

detection. Parallel computing is the most efficient method of

face detection and Recognition.

Parallel processing is the process of splitting a complex

obstacle into smaller jobs, distributing these jobs to several

processors, and accomplish them all at the same time. The basic

goals of parallelization are high achievement through reducing

time, increased performance, and better resource use. Each sub-

instructions problem runs in parallel on different processors.

Parallel computing is achieved by using GPU.

In data processing applications, graphics processing units

(GPUs) are commonly utilized. The computing power of GPUs

is several times that of CPUs. GPU computes complex

operations, especially when it comes to generating frames for

real-time computer games and complicated embedded videos.

CPUs have a limited number of cores that are intended for

sequential evaluation, but GPUs have hundreds of cores that are

targeted to parallel processing. As a result, a huge increase in

speed can be realized by doing high-level computational tasks

on the GPU while the remaining of the code is computing on

the CPU. GPGPU supported CUDA is used to speed up the

parallel computing approaches.

2. Face Detection and Face Recognition Techniques

A. Face Detection Technique

Face detection methods can be classified into two categories:

feature-based detection and image-based detection. The first

phase involves generating a collection of weak classifiers

depend on Haar-like features and then creating a stage cascade

classifier with all of the promising weak classifiers [5]. In the

second phase, the algorithm will explore for every size of the

input frame using the trained stage cascade classifier in a

dynamic search window to check for characteristic of a human

face.

1) Haar-like Features: The Viola-Jones cascade

classification algorithm is a Haar-like feature-based face

detection algorithm. Haar features are used to replicate the

different features of the face in the image. The sum of pixel

values of the white region gets subtracted from the black region.

The output of the feature results in a single value. All haar

features have some sort of resemblance to the facial expression.

For analyzing features, the Voila Jones method uses 24X24

windows as the base window size. Haar features include all

feasible characteristics such as position, length, and type,

resulting in a total of 160,000+ features being calculated.

 2) Integral Image: The value at pixel (x,y) in an integral

image is the addition of the pixels above and to the left of it

A Survey on Face Detection and Recognition

using CUDA

Shweta S. Kumar1*, K. Raju2

1Student, Department of Computer Science and Engineering, NMAM Institute of Technology, Nitte, India
2Associate Professor, Department of Computer Science and Engineering, NMAM Institute of Technology, Nitte, India

Kumar et al. International Journal of Research in Engineering, Science and Management, VOL. 5, NO. 6, JUNE 2022 293

(x,y). The total number of pixels within any given rectangle can

be determined using only four values at the rectangle’s corners.

The integral image can be calculated by using,

Fig. 1. Haar features representing theoretical face model

Fig. 2. Addition of pixels in integral image

The value of any rectangular sum in constant time can be

computed using integral image computing. The integral entity

of rectangle D can be calculated as follows:

Sum(D)=IS(4)+IS(1)-IS(2)-IS(3)

3) Adaboost: Adaboost is a technique for integrating some of

the irrelevant features into a relevant feature that may be

utilized to model and recognize a face in a scene. It is an

efficient technique that evaluates each rectangle feature as if it

were a simple weak classifier. The Adaboost algorithm is used

to choose a feature rectangle that includes face features,

integrate them into a weak classifier, generate a strong classifier

from a collection of weak classifiers, and finally concatenate

the strong classifiers into a cascade classifier [2]. Adaboost is

used to eliminate redundant features. AdaBoost accepts training

samples as input.

S = (x1, y1),.,(xn,yn)

For each instance of S belonging to a field or instance space

X, and each label belonging to the finite label space Y. When

identifying the suitable return value of the classification

function and threshold, the algorithm can generate a simple and

productive classifier, and the classifier may considerably

enhance the activity of face detection.

4) Cascade Classifier: The algorithm includes several

features in the cascade classification stage, such as eyes and

nose, upper cheeks, forehead region, and so on, and it would be

impractical to asses all of the features arbitrarily. To avoid this

issue, the algorithm uses cascade classification to divide the

count of features and quickly remove windows that do not

contain a face.

Fig. 3. Cascade-Classifier

Cascade also prevents windows that don’t resemble a face

from being analyzed repeatedly. When a window fails a certain

phase, it is automatically labeled as not a face. In general, initial

phases are easier to pass, whereas final phases are more

difficult. If the window has all of the features of a specific stage,

the stage is considered to be passed, and the window is passed

to the neighbouring stage, where it is scanned for features of

that stage. If a window passes all of the stages, it is considered

a face, and the following window is processed in the same way.

B. Face Recognition Technique

PCA is a statistical process that converts a mathematical

model of apparently interrelated variables into a set of

exponentially stochastic variable values called principle

components using an optimization technique. The number of

estimated parameters is underneath or comparable to the

number of principal components. PCA can be performed using

eigenvalue analysis of a data covariance (or correlation) matrix,

usually after normalizing the input vector for each attribute.

PCA algorithm is used for features selection and for reducing

the dimensional.

PCA computation in Face Recognition

Step 1: The training set will consist of total M images I1, I2....,

IM, each of the image is of size NxN. It has N2 pixels.

Step 2: Each of the faces in the training set is converted into

a vector form shown in figure 5. It is represented in τi. This is a

column Vector.

Step 3: calculate the average face vector Ψ.

Step 4: Normalize the face vector by subtracting the average

face vector from the original faces. Normalization is removing

all the common features the faces share, they should be re-

Kumar et al. International Journal of Research in Engineering, Science and Management, VOL. 5, NO. 6, JUNE 2022 294

moved and left with unique feature.

Φi = τi – Ψ

Step 5: Calculate the covariance matrix.

Step 6: Compute Eigen vector ui of the covariance matrix.

ui = Avi

Step 7: Represent each face image a linear combination of all

K-Eigen Faces, computing the image back to the original

dimension by adding the features removed during the analysis.

Fig. 4. Computation of PCA algorithm

Fig. 5. Conversion of NxN image into N 2x1 vector

3. Survey on Face Detection and Face Recognition

A. Face Detection Survey

The existing system of face detection describes the various

methods being used to detect the face. Face Detection methods

are categorized into Knowledge-Based Method, Template

Based Method, Feature-Based Method, Appearance Based

Method, and Viola and Jones Method [17]. Due to the

sophisticated structure of the face, it becomes difficult to detect

the face, and computation time increases. The researchers have

proposed many ways to parallelize the detection method to get

an efficient computation time. The feature of the face detection

system is implemented in two ways, Implementation on the

CPU and Implementation on the CPU and GPU. In the CPU

analysis part, a single thread is used to implement all of the

features of the face detection system [4]. Some feature was

implemented using CPU (host) and the majority of functionality

was developed using GPU (device) with data parallelization

under the CPU and GPU implementation phase. CUDA

technology is used to execute the face detection al- gorithm on

the GPU. Every thread in CUDA comprises kernels that are

performed n times, and each thread is identified by a unique

number. In the Compute Unified Device Architecture (CUDA)

platform, the study suggested a rapid face detec- tion

acceleration approach based on the Viola-Jones cascade

classifier. Li-Chao Sun and Sheng-bing Zhang developed and

enhanced unique parallel algorithms for image integral compu-

tation, computing of scan windows, and Synthesis of classifiers

and correction [2]. The performance of the CUDA version over

the CPU version rises exponentially as the image size increase,

the CUDA program executing on an Nvidia GTX 570 graphics

card could gain 17.04 and 3.22 times faster speeds than the CPU

and Open Source Computer Vision (OpenCV) program. This

program is still restricted by the complication of too many split

at the strong classifier stage. This can be reduced by changing

the classifier’s structure and enhancing the realization

approach, allowing face identification speed to increase.

CUDA environment to take control of the GPU component’s

power, and the “OpenCV” package to understand the input

image and perform the analysis.The block size is a major

consideration in computation power [3]. The developer can use

CUDA functions to specify the number of kernel threads that

execute on the GPU. The serial processes of the Viola- Jones

technique can be executed on a correspondent platform using

CUDA and OpenCV on the GPU [8]. The algorithm obtained

from parallel implementation are used to boost the computing

speed, and then compared the results of serial and parallel

applications. The shifting of procedure to and from main and

GPU memory consumes the majority of the handling time. It

performs best in a repressed environment since the parallel

performance requires minimum time. The detection rate is

higher than the traditional approach, and it is effectively better

to analyse massive data using GPU.

A comparison of performance time for extracting features

implementation on the GPU and CPU has been analyzed by

modifying the magnitude of the image. This model can execute

parallel computation in a fraction of the time and with a

Kumar et al. International Journal of Research in Engineering, Science and Management, VOL. 5, NO. 6, JUNE 2022 295

considerable speedup over the CPU [3]. The GPU

implementation’s performance is indicated by its enhanced

performance when compared to sequential calculation. This can

be further enhanced by designing more advanced im- age

transmission algorithms in the GPU by employing the

appropriate memory type to minimize memory access and

optimizing CUDA programming by making greater use of the

GPU’s resources to obtain significant performance.

GPU-based implementation compares performance to CPU-

based implementation by analyzing images at various scales,

sizes, and the number of faces. Robust Face Detection System

implementation on the GPU initiated that the GPU-based

method performed 5.41 to 19.75 times higher than the CPU

version and represented significantly better even at higher

resolutions [4]. This can be enhanced by adding some new

features to the side pose of an image and extending the same for

face recognition. Using CUDA technology, the facial detection

method may be optimized for implementation on the GPU.

When the Viola-Jones face method is used in parallel, it

produces optimum results. For several algorithms, the speed-

up factor can be computed, when algorithms involving rig-

orous computations are divided up into parallel and executed

concurrently, they perform better on parallel systems.

The CUDA process begins with memory allotment in the

device (GPU) while data is prepared on the host (CPU). The

data is then passed from the host to the device. As this is a time-

consuming operation, it is vital to reduce the amount of data

that must be moved from the host to the device and from the

device to the host [5]. It is feasible to run kernels after the data

on the device has been compiled. When the estimation is

accomplished, the impact are sent back to the host for display,

and the allocated memory is freed. The latest GPU technology,

such as Compute Unified Device Architecture (CUDA), has

demonstrated its ability to speed up parallelization processes

and enhance the overall performance of the system. The

detection technique was tested for performance on various

NVIDIA GPU cards, and a comparison of the face detection

application may be measured in terms of frames per second

between the CPU and the proposed GPU acceleration. OpenCV

and CUDA can use the Viola-Jones algorithm based on

Adaptive Boosting to accelerate a frontal face identification

system. When compared to the CPU version, the CUDA-based

GPU accelerated Viola-Jones face detection has a extreme

speed up of twenty two times and is also faster than FPGA

implementation of 16 frames per second.

Viola and Jones algorithm can be executed in the simple one-

thread CPU version and the initial application is then expanded

to include a multi-threaded CPU version. The most essential

aspect is that the image size determines the detection time [6].

As an outcome, the single-thread CPU implementation is

significantly slower than the multi-thread CPU and GPU

implementation. The outcome of CUDA accelerating face

detection shows that GPU detection is 35 times faster on

average than one thread CPU detection. The results are

consistent with the multi-thread CPU model, although the GPU

is still faster. It is intended to expand face detection capabilities

to allow for the recognition of faces preserved in a database.

Based on the GPU component, the researcher designed a

robust face detection system [7]. The code has been enhanced

by using a strategy to utilize diverse memory constraints in the

GPU and the warp scheduler approach to speed up memory

admittance, with greater resource utilization provided by GPU.

The entire image is processed during the detection phase by

changing the distinguishing window pixel by pixel in either the

horizontal or vertical area. The proportion are changed by

gradually increasing the magnitude of the detecting window.

Images with a small quantity of faces are statistically fast,

whereas images with a large quantity of faces take longer to

process. When processing a computationally basic image, the

GPU operates 1.7 times speeder than when processing a more

complicated image. The research outcome show that the

approached method exceed the standard method in terms of

speed, resulting in a considerable increase in processing time.

Furthermore, for a single image of varied sizes, the parallel

approach yielded better results. To achieve competitive results,

the Viola-Jones face identification algorithm can run on

numerous GPUs.

B. Face Recognition Survey

Template-based matching and feature-based matching are

the two main types of facial recognition algorithms. To

determine key individual components, template based matching

projects for a chain of images from a database into a new

subspace. Feature-based matching concentrates on the face’s

overall attributes [16]. The NVIDIA GeForce GTX 770 GPU

has a computational capability of 3.0, a strategy is proposed for

processing images for face detection and recognition in parallel.

Face detection is performed by Viola and Jones, and face

identification is performed using the PCA Eigenfaces

algorithm. An important feature is that the algorithms are

executed in parallel, with one detecting a face and forwarding

it to the face-processing system [1]. Face processing on the

CPU takes substantially longer than on the GPU because it must

wait for all faces to be detected in the frame, whereas with a

parallel system, any face detected at any time is recognized

instantly, which distinguishes between CPU and GPU

execution in a real-time basis. Viola and Jones show results of

analyzing the faces at 15 frames per second and the

parallelization method shows 109 frames per second in CUDA.

CUDA implementation can be efficiently used for Local

Binary pattern computation and K-NN classification [11]. The

first approach is to show about using a single kernel to compute

LBP values from an input image and build weighted regional

LBP histograms in GPU. The second approach is to show a

GPU implementation of the k-NN algorithm that is designed for

dealing with high-dimensional feature vectors. By speeding up

both the feature extraction and classification processes of the

face recognition algorithm, researchers were able to achieve a

29x gain in recognition speed when compared to CPU

implementations. Researchers identified various exaggeration

that can fully exploit GPUs to provide problem solving

processing of unified face detection and recognition.

Optimization strategies for LBP-based integrated face detection

and identification algorithms [10], achieved by accelerating

Kumar et al. International Journal of Research in Engineering, Science and Management, VOL. 5, NO. 6, JUNE 2022 296

them with OpenCL on ARM Mali GPU and CUDA on Tegra

K1 GPU for HD inputs, attaining 22 fps using OpenCL and 38

fps using CUDA. This is equal to speedups of 2.9 and 3.7 times,

respectively.

A super-fast Parallel Eigenface for face recognition is

implemented, using CUDA on NVIDIA K20 GPU [12]. The

goal of the study was to achieve optimum accomplishment by

designing highly modified kernels for a comprehensive process

and employing the quickest library functions available. Reduce,

projection, subtract, transpose, matmul, and euclidian Dist are

some of the effective kernels being used in the study. The

generation of feature vectors is boosted by 460X, the whole

training process is boosted by 73X, and the overall testing

procedure of one image is increased by 6X. The output and

estimation analysis show that the proposed approach is both

accurate and scalable.

Using PCA, the eigenface technique minimizes the number

of dimensions that the face classifier must analyze. The

eigenvalues generate a feature space, which has far lower-

dimensional than the original space [14]. Researchers an- alyze

the design space for parallelizing a PCA-based face recognition

algorithm and propose a fast face recognizer on GPUs. Three

tasks are successfully accelerated for data parallelism, they are

Covariance Matrix Computation Task, Eigenface Computation

Task, Projecting to Subspace (PS) task [18]. Covariance Matrix

Computation achieved about 120-fold speedup considered as

best when compared with other tasks. Various possible

mapping of PCA-based face recognition onto GPUs are

possible by effectively accelerating overall by thirty folds and

accelerating the OpenCV APIs for general PCA.

The overall execution time of the training phase, which

includes normalization, covariance, Jacobi, eigenface, and

weights module, is estimated for serial and parallel

implementation. Shifting training image from CPU to GPU

takes less time as correlated to computation time [14]. In the

training phase, the parallel execution of the eigenface algorithm

showed a 5x speedup. As the training database expands, the

speedup also increases. The eigenface computation module

achieved the largest speedup of 148x during the training phase.

With a speedup of 3x to 5x, the Jacobi module has the minimum

attainment improvement of all the training phase modules. This

can be improved by employing dynamic parallelism to

implement the Jacobi module. With dynamic parallelism, the

Jacobi module only needs to start one kernel from the host, and

no storage copy will be required.

Face detection and recognition tasks were successfully

achieved using a face recognition system based on the Compute

Unified Device Architecture (CUDA) platform [15]. Re-

searchers developed and optimized unique parallel techniques

of image integral, computation scan window processing, and

classifier amplification and correction during the face detection

phase and explored some of the testing steps parallelized during

the face recognition phase. When compared to a classic CPU

program, the parallel recognition technique proceeding on a

NVidia GTX 570 graphics card could enact 22.42 times

speedup in the detection stage and 1668.56 times speedup in the

recognition stage when only training two thousand images and

testing forty images in comparison to a CPU program.

For the PCA method training and recognition steps, the

parallel GPGPU performance was shown to be quicker than the

serial multithread performance [16]. The program was

performed on two machines with varied CPU speeds and cores,

but the GPGPU computation potentiality were similar. The

Apollo 3 and Apollo 5 machines were used to examining the

GPGPU implementation’s performance. By comparing the

CUDA and serial performance side by side, the training and

recognition codes are analyzed individually. The training step

showed maximum improvement, the recognition process also

improved significantly. This work can be enhanced by

implementing the algorithm on using Singular Value

Decomposition and extending other recognition algorithms

(LDA and ICA) to the GPGPU platform, as well as evaluating

the period of time and exactness of the algorithms in serial and

parallel form.

4. Conclusion

Face detection and recognition experiments using CUDA

were studied in this paper. It has been determined that face

detection and recognition tasks performed using CUDA’s

parallel computing capacity are significantly faster. The

majority of researchers have analyzed Viola and Jones

algorithm and Principal component analysis for face detection

and recognition using CUDA. Faster face detection and

identification systems can be utilized in all aspects of life by

developing CUDA-based systems with shorter execution times.

References

[1] Shivashankar J. Bhutekar, Arati K. Manjaramkar, “Parallel Face

Detection and Recognition on GPU,” International Journal of Computer
Science and Information Technologies Vol. 5 (2), pp. 2013-2014, 2018.

[2] Li-chao Sun, Sheng-bing Zhang, Xun-tao Cheng, Meng Zhang,

“Acceleration Algorithm for CUDA-based Face Detection,” International
Conference on Signal Processing, Communication and Computing, 2013,

pp. 1-5.

[3] Hana Ben Fredj, Mouna Ltaif, Anis Ammar, Chokri Souani, “Parallel
implementation of Sobel filter using CUDA”, International Conference

on Control Automation and Diagnosis (ICCAD), pp. 209–212, 2017.

[4] Vaibhav Jain, Dinesh Patel. “A GPU based implementation of Robust
Face detection System” Procedia Computer Science, 87:156-163, 2016.

[5] Adrian Wong Yoong Wai, Shahirina Mohd Tahir and Yoong Choon

Chang, “GPU acceleration of real time Viola-Jones face detection,” IEEE
International Conference on Control System, Computing and Engineering

(ICCSCE), pp. 183-188, 2015.

[6] J. Krpec, M. Nemec. “Face detection CUDA accelerating”, the Fifth
International Conference on Advances in computer Human Interactions,

Valencia, Spain; 2012, pp. 155-160.

[7] Hana ben fredj, Souhir Sghair, Chokri Souani. “An Efficient Parallel Im-
plementation of Face Detection System Using CUDA”, International

Conference on Advanced Technologies for Signal and Image Processing,

ATSIP’, Sfax, Tunisia, 2020.
[8] Aashna R. Bhatia, Narendra M. Patel, Narendra C. Chauhan, “Parallel

implementation of face detection algorithm on GPU”. 2016 2nd

International Conference on Next Generation Computing Technologies
(NGCT), 2016.

[9] Paramjeet Kaur, Nishi, “A Survey on CUDA”, International Journal of
Computer Science and Information Technologies, Vol. 5 (2), 2014, 2210-

2214.

[10] S. Yi, I. Yoon, C. Oh, and Y. Yi, “Real-time Integrated Face Detection
and Recognition on Embedded GPGPUs,” IEEE 12th Symp. on Em-

bedded Syst. for Real-time Multimedia (ESTIMedia), pp. 98-107, Oct.

2014.

Kumar et al. International Journal of Research in Engineering, Science and Management, VOL. 5, NO. 6, JUNE 2022 297

[11] S. C. Tek and M. Gkmen, “CUDA accelerated face recognition using local
binary patterns.” Proceedings of Winter Seminar on Computer Graphics,

2012.

[12] U. Devani, V. B. Nikam, and B. B. Meshram, “Super-fast parallel Eigen-
face implementation on GPU for face recognition,” in 2014 International

Conference on Parallel, Distributed and Grid Computing, 2014, pp. 130–

136.
[13] Bhumika Agrawal, Chelsi Gupta, Meghna Mandloi, Divya Dwivedi,

Jayesh Surana, “GPU Based Face Recognition System for

Authentication”. International Journal of Engineering Development and
Research, Volume 5, 2017.

[14] Kawale MR, Bhadke Y, Inamdar V (2014), “Parallel implementation of

eigenface on CUDA.,” in 2014 International conference on advances in
engineering technology research (ICAETR - 2014), pp 1–5.

[15] Ren Meng, Zhang Shengbing, Lei Yi and Zhang Meng, “CUDA-based
real-time face recognition system”, Digital information and com-

munication technology and it’s applications, 2014 fourth international

conference on, pp. 237–241, IEEE, 2014.
[16] T. Goodall, S. Gibson, and M. C. Smith, “Parallelizing principal

component analysis for robust facial recognition using CUDA,”

Symposium on Application Accelerators in High Performance
Computing. pp. 121–124, 2012.

[17] Patel Raksha R, Isha K. Vajani, “Face Detection on a parallel platform

using CUDA technology”, International Journal of Advance Engineering
and Research Development, Volume 2, Issue 5, May 2015.

[18] Woo Y, Yi C, Yi Y (2013), “Fast PCA-based face recognition on GPUs,”

in Acoustics, speech and signal processing (ICASSP), IEEE International
Conference on, pp. 2659–2663, 2013.

