

Fuzzy Simple, Fuzzy Identity and Fuzzy Zero of a Po-Ternary Gamma Semi Group

Kishore Kanaparthi^{1*}, A. Gangadhara Rao², A. Anjaneyulu³, J. M. Pradeep⁴, Gudimella V. R. K. Sagar⁵

¹Lecturer, Department of Mathematics, Government Polytechnic, Repalle, Bapatla, India

²Lecturer, Department of Mathematics, A.B.R. Degree College, Repalle, Bapatla, India

³Lecturer, Department of Mathematics, V.S.R. & N.V.R. Degree College, Tenali, India

⁴Lecturer, Department of Mathematics, A. C. College, Guntur, India

⁵Lecturer, Department of Mathematics, Government Polytechnic, Addanki, Prakasam. India

Abstract: We introduce the terms Fuzzy Simple POTFSG, Fuzzy left (right & lateral) identity. And proved Fuzzy left (right & lateral) identity of a POTFSG if exists they are same. Fuzzy left (right & lateral) zero of a POTFSG Also shows that the intersection of infinite family of fuzzy POTFSSGs of a POTFSG T is fuzzy POTFSG of T. Also h is a fuzzy ideal of a POTFSG T iff $h\Gamma T\Gamma \Box h$, $T\Gamma T\Gamma h \Box h$, $T\Gamma h\Gamma \Box h$ and $(h] \Box h$. Finally, we showed the intersection, union of arbitrary family of fuzzy deals of T is an ideal of T.

Keywords: Fuzzy simple POTISG, Fuzzy identity of a POTISG, Fuzzy zero of a POTISG, Fuzzy ideal.

1. Introduction

A. H. Clifford and Preston G.B [2], [3], Petrich. M [5] and Ljapin E. S [4] were deeply studied Algebraic theory of semi groups. A.Anjaneyulu [1] had buildout an ideal theory in semi groups. The "fuzzy theory" of semi groups are established by Kuroki and Xie. Sarala.Y [13] defined theory of ideals in ternary semigroup. Pradeep J.M, Gangadhararao. A, Ramyalatha. P, Achala [16] defined Fuzzy identity and Fuzzy zero of a PO ternary semi group, PO ideal, PO ideal generated by a subset.

We introduce some classical concepts of Fuzzy simple POT Γ SG, Fuzzy identity and Fuzzy zero of a POT Γ SG, operations on fuzzy POT Γ SG in this paper. We denote Po ternary Γ semi group as POT Γ SG, Po ternary Γ sub semi group as POT Γ SSG, Fuzzy Subset as FS, Fuzzy ideal as FI, ordered fuzzy point as OFP, fuzzy left ideal as FLI, fuzzy right ideal as FRI throughout in this paper.

2. Prerequisites

Definition 2.1: "A semi group T has an ordered relation " \leq " is known as PO ternary Γ semi group (POT Γ SG) if T is a

POSET such that $q \leq r \Longrightarrow q\gamma q_1 \delta q_2 \leq r\gamma q_1 \delta q_2$, $q_1\gamma q\delta q_2 \leq q_1\gamma r\delta q_2, q_1\gamma q_2\delta q \leq q_1\gamma q_2\delta r \forall$ $q, r, q_1, q_2 \in T$ ". **Definition 2.2:** "Let $\phi \neq C \subseteq T$. The characteristic mapping $h_{\rm C}: {\rm T} \rightarrow [0,1]$ is defined as $h_{\rm C}(t) = \begin{cases} 1 & \text{if } t \in {\rm C} \\ 0 & \text{if } t \notin {\rm C} \end{cases}$.

Then $h_{\rm C}$, is a fuzzy subset (FS) of T".

Definition 2.3: "A mapping $h: T \rightarrow [0,1]$ is said to be a FS of T. The POTTSG itself a FS of T \ni T(t) = 1 $\forall t \in$ T and it denotes T or 1".

Definition 2.4: Let $K \subseteq T$, a POT Γ SG. Now let us define $(K] = \{r \in T \mid r \le h \text{ for some } h \in K\}$, when

K = {c} we write $(c] = (\{c\}] = \{r \in T / r \le c\}.$

Definition 2.5: Let $K \subseteq T$, a POTISG. Now let us define $[K] = \{r \in T \mid h \le r \text{ for some } h \in K\}$, when

$$\mathbf{K} = \{c\}$$
 we write $(c] = (\{c\}] = \{r \in \mathbf{T} / r \le c\}$.

Definition 2.6: Let *h* be a FS of a POT Γ SG T. Let us define (*h*] as (*h*](r)= \lor *h*(s), \forall r \in T

Note 2.7: "The collection of every FSs of T is denoted as H(T)".

Definition 2.8: Let u, v, w be FS of a POTFSG T. For each $t \in \mathbf{T}$ the product $u\Gamma v\Gamma w$ is defined as $(u\Gamma v\Gamma w)(t) = \begin{cases} \bigvee u(q) \land v(r) \land w(s) & \text{if } t \le q\gamma r\delta s \text{ exists} \\ 0 & \text{otherwise.} \end{cases}$

Definition 2.10: "Let h be FS of T, a POTTSG is known as fuzzy POTTSSG of T if $(i)q \le r$ then $h(q) \ge h(r)$ (ii)

 $h(q\gamma r\delta s) \ge h(q) \land h(r) \land h(s), \forall q, r, s \in T, \gamma, \delta \in \Gamma$ ".

Definition 2.11: "a FS h of a POTTSG T is known as fuzzy PO left ideal of T if

(*i*)
$$q \le r$$
 then $h(q) \ge h(r)$
(*ii*) $h(q\gamma r\delta s) \ge h(s), \forall q, r, s \in T, \gamma, \delta \in \Gamma$ ".

^{*}Corresponding author: kishorekanaparthi@gmail.com

Lemma 2.12: "Let T be a POTTSG and h be FS of T. h is a fuzzy PO left ideal of T $\Leftrightarrow h$ satisfies the conditions that (i) $q \le r$ then $h(q) \ge h(r), \forall q, r \in T$,

(*ii*) $T\Gamma h\Gamma h \subseteq h$ ".

Definition 2.13: "a FS h of a POTTSG T is known as fuzzy PO right ideal of T if

(i) $q \le r$ then $h(q) \ge h(r)$

(*ii*) $h(q\gamma r\delta s) \ge h(q), \forall q, r, s \in T, \gamma, \delta \in \Gamma$ ".

Lemma 2.14: Let h be a FS of a POTTSG T. h is a fuzzy PO right ideal of T iff h satisfies the conditions that

(i) $q \leq r$ then $h(q) \geq h(r), \forall q, r \in T, (ii) \quad h\Gamma h\Gamma T \subseteq h.$

Definition 2.15: "a FS h of a POTTSG T is known as fuzzy PO lateral ideal of T if

(*i*) $q \le r$ then $h(q) \ge h(r)$

(*ii*) $h(q\gamma r\delta s) \ge h(r), \forall q, r, s \in T, \gamma, \delta \in \Gamma$ ".

Lemma 2.16: Let *h* be a FS of a POTTSG T. h is a fuzzy PO lateral ideal of T iff h satisfies the conditions that $(i) q \leq r$ then $h(q) \geq h(r), \forall q, r \in T, (ii) h \Gamma T \Gamma h \subseteq h$.

Definition 2.17: "Let T be a POTTSG and h be a FS of T is said to be a 'fuzzy ideal(FI)' of T if

(i) $q \le r$ then $h(q) \ge h(r)$

(*ii*) $h(q\gamma r\delta s) \ge h(s), h(q\gamma r\delta s) \ge h(q), h(q\gamma r\delta s) \ge h(r).$

Lemma 2.18: "Let T be a POTTSG and h be a FS of T. Then, h is FI of T iff h satisfies the conditions that

(*i*) $q \le r$ then $h(q) \ge h(r), \forall q, r \in \mathbf{T}$,

(*ii*) $T\Gamma h\Gamma h \subseteq h, h\Gamma h\Gamma T \subseteq h, h\Gamma T\Gamma h \subseteq h$ ".

Lemma 2.19: Let $\phi \neq C \subseteq T$, a POTTSG. Then C is a left ideal of T iff the characteristic function h_C , of C is a FLI of T.

Lemma 2.20: Let T be a POTTSG and $\phi \neq C \subseteq T$. Then C is a right ideal of T iff the characteristic function $h_{\rm C}$, of C is a FRI of T.

Lemma 2.21: Let T be a POTFSG and $\phi \neq C \subseteq T$. Then C is an ideal of T iff the characteristic function $h_{\rm C}$, of C is a FI of T.

Proposition 2.22: Let h, g, s be three FSs of T. Then the subsequent conditions are true.

1. $h \subseteq (h], \forall h \in H(T)$

- 2. If $h \subseteq g$, then $(h] \subseteq (g]$
- 3. $(h]\Gamma(g] \subseteq (h\Gamma g), \forall h, g \in H(T)$
- 4. For any FI h of T, $(h] \subseteq (g]$
- 5. If h, g are FI of T, then $h\Gamma g$, $h \cup g$ are FIs of T

6.
$$h\Gamma(g \cup f] \subseteq (h\Gamma g \cup h\Gamma f]$$

7.
$$(g \cup h]\Gamma f \subseteq (g\Gamma f \cup h\Gamma f]$$

8. If z_{λ} is an OFP of T, then $z_{\lambda} = (z_{\lambda}]$.

Definition 2.23: Let T be a POTFSG, $z \in T$ and $\lambda \in (0,1]$.

An OFP $z_{\lambda}, z_{\lambda}: T \rightarrow [0,1]$ defined by

$$z_{\lambda}(r) = \begin{cases} \lambda & \text{if } r \in (z] \\ 0 & \text{if } r \notin (z] \end{cases}$$

Clearly z_{λ} is a FS of T. For each FS h of T and denote z_{λ} $\subseteq h$ as $z_{\lambda} \in h$

Definition 2.24: Let *h* be a FS of T and $t \in [0,1]$. If $h_t = \{r \mid r \in T \mid h(r) \ge t\}$ then h_t is termed as t-cut or a level set.

3. Fuzzy Simple POTLSG

Definition 3.1: "A POTFSG T is known as left Simple Ternary Γ semi group (LSTFSG) if T is itself only left ideal".

Definition 3.2: "A POTTSG T is known as fuzzy left Simple T Γ semi group (FLSTTSG) if each fuzzy left ideal (FLI) in T is a constant function".

Definition 3.3: Let h be a FS of a POTISG T. We define $h_{(\text{TITT}a]}(r) \text{ as } h_{(\text{TITT}a]}(r) = \begin{cases} 1 & \text{for } r \in (\text{TITT}a] \\ 0 & \text{otherwise} \end{cases}$

Theorem 3.4: "Let T be a POTFSG. Then $h_{(TFTFa)}$ is FLI of

T, for each $a \in T$ ". **Proof:** (1) for $q, r, s \in T$ and If $r \in (T\Gamma \Gamma T \Gamma a]$, then $h_{\text{(TITT}a]}(q) = h_{\text{(TITT}a]}(r) = h_{\text{(TITT}a]}(s) = 1$ since $q \leq r \Longrightarrow q \in (T\Gamma T\Gamma a].$ If $r \notin (T\Gamma \Gamma T\Gamma a]$, then $h_{\text{CELTE}_{a1}}(r) = 0 \le h_{\text{CELTE}_{a1}}(s) = 1.$ By summarizing the above $h_{(\text{TTTT}a)}(q) \ge h_{(\text{TTTT}a)}(r)$. (2) If $r \notin (T\Gamma \Gamma \Gamma a]$, then $h_{\text{(TITTTal}}(r) = 0 \le h_{\text{(TITTTal}}(q\gamma r\delta s).$ If $r \in (T\Gamma T\Gamma a]$, then $h_{(T\Gamma T\Gamma a]}(r) = 1$ $: r \in (T\Gamma T\Gamma a]$ and $(T\Gamma T\Gamma a]$ is a PO right ideal of T, then $q\gamma r\delta s \in (T\Gamma T\Gamma a] \forall q \in T, \gamma, \delta \in \Gamma$ $\Rightarrow h_{\text{TTTTal}}(q\gamma r\delta s) = 1 = h_{\text{TTTTal}}(s)$ $h_{(\mathrm{TFTT}_{a})}(q\gamma r\delta s) \ge h_{(\mathrm{TFTT}_{a})}(s)$ From (1) and (2), $h_{(T\Gamma T\Gamma a)}$ is FLI. Theorem 3.5: Let T be a POTFSG, the subsequent statements are equal. 1) T is a LSPOTFSG 2) T is a FLSTFSG.

1) T is a LSPOTI SG 2) T is a FLSTI SG.

Proof: First we prove (i) \Rightarrow (ii):

Assume that T is a LSPOTFSG.

Suppose *h* is any FLI of T, Then $q, r, s \in T$ and

$\gamma, \delta \in \Gamma$

 $m = q\gamma l\delta l$ and $l = r\gamma m\delta m$ By definition of T, we have $h(l) = h(r\gamma m\delta m) \ge h(m) = h(q\gamma l\delta l) \ge h(l)$ $\therefore h(l) = h(m)$

:. *h* is constant FI. Hence, T is fuzzy left simple POTFSG. (ii) \Rightarrow (i): Suppose that T is a FLSTFSG.

If C is any PO left ideal, then C_c is a FLI of T.

 \Rightarrow C_C is constant function.

Let $r \in T$ and $C \neq \varphi, C_C(r) = 1$ implies that $r \in C$ $\Rightarrow T \subset C$.

 \therefore **T** = *C*. Hence **T** is LSPOTFSG.

Theorem 3.6: Let T be a POTTSG. Then T is a FLSPOTTSG iff $h_{(TTTTa)} = T = h_T \forall a \in T$.

Proof: Suppose that T is a FLSPOTTSG.

By above theorem, T is a LSPOTTSG. Then, we have $(T\Gamma T\Gamma a] = T$.

Therefore $h_{(\mathrm{T}\Gamma\mathrm{T}\Gamma a]} = \mathrm{T} = h_{\mathrm{T}} \forall a \in \mathrm{T}.$

Conversely, suppose that $h_{(T\Gamma T\Gamma a]} = T = h_T$.

 $\Rightarrow h_{(\mathrm{T}\Gamma\mathrm{T}\Gamma a]}(t) = h_{\mathrm{T}}(t)$

 \Rightarrow (T Γ T Γa] = T. Then T is a LSPOT Γ SG. Then by above theorem, T is a FLSPOT Γ SG.

Definition 3.7: "A POT Γ SG T is known as right Simple Ternary Γ semi group (RST Γ SG) if T is itself only PO right ideal".

Definition 3.8: "A POT Γ SG T is known as fuzzy right Simple Ternary Γ semi group (FRST Γ SG) if each FRI of T is constant function".

Definition 3.9: Let h be a FS of a POT Γ SG T. We define

 $h_{(a\Gamma T\Gamma T]}(r) = \begin{cases} 1 & \text{for } r \in (a\Gamma T\Gamma T] \\ 0 & \text{otherwise} \end{cases}$

Definition 3.10: "Let T be a POT Γ SG T is known as fuzzy Simple ternary Γ semi group (**FST** Γ **SG**) if every FI of T is a constant function".

Theorem 3.11: "Let T be a POTFSG. Then $h_{(a \cap T \cap T)}$ is a FRI

of T for all $a \in T$ ".

Proof: (a) Let $p, q, r \in T$ and $\alpha, \beta \in \Gamma$ Also $p \le q, q \le r$. If $q \in (a\Gamma\Gamma\Gamma\Gamma]$, then

 $h_{(a\Gamma T\Gamma T]}(p) = h_{(a\Gamma T\Gamma T]}(q) = h_{(a\Gamma T\Gamma T]}(r) = 1$ since $p \le q$ implies $p \in (a\Gamma \Gamma\Gamma T]$

If $q \notin (a \Gamma T \Gamma T]$ then $h_{(a \Gamma T \Gamma T)}(q) = 0 \le h_{(a \Gamma T \Gamma T)}(p)$

By summarizing the above $h_{(a\Gamma T\Gamma T]}(p) \ge h_{(a\Gamma T\Gamma T]}(q)$. (b) If $p \notin (a\Gamma T\Gamma T]$, then
$$\begin{split} h_{(a\Gamma\Gamma\Gamma\Gamma]}(p) &= 0 \le h_{(a\Gamma\Gamma\Gamma\Gamma]}(p\alpha q\beta \gamma) \\ \text{If } p \in (a\Gamma\Gamma\Gamma\Gamma], \text{then } f_{(a\Gamma\Gamma\Gamma\Gamma]} = 1. \\ \text{Since } p \in (a\Gamma\Gamma\Gamma\Gamma] \text{ and } (a\Gamma\Gamma\Gamma\Gamma] \text{ is PO right ideal, then } \\ p \in (a\Gamma\Gamma\Gamma\Gamma] \in p\alpha q\beta \gamma \text{ for all } q \in \Gamma \text{ and } \alpha, \beta \in \Gamma \\ \therefore h_{(a\Gamma\Gamma\Gamma\Gamma]}(p\alpha q\beta r) = 1 = h_{(a\Gamma\Gamma\Gamma\Gamma]}(p) \\ \text{Therefore } h_{(a\Gamma\Gamma\Gamma\Gamma]}(p\alpha q\beta r) \ge h_{(a\Gamma\Gamma\Gamma\Gamma)}(p). \end{split}$$

 $\therefore h_{(a \cap T \cap T)}$ is a FRI of T.

Theorem 3.12: Let T be a POT Γ SG T, then the subsequent conditions are equal.

(1) T is a RSPOTICG 2) T is a FRSPOTICG **Proof:** (1) \Rightarrow (2):

Suppose T is a RSPOTFSG.

Consider *h* is any FRI, Then $l, m, n \in T$ and $\alpha, \beta, \gamma, \delta \in \Gamma$ such that $p \alpha p \beta l = q$ and $q \gamma q \delta m = p$. Since *h* is a FRI, Then

 $h(p) = h(q\gamma q\delta m) \ge h(q) = h(p\alpha p\beta m) \ge f(p)$

$$\Rightarrow h(p) = h(q) \forall p, q \in \mathbf{T}$$

h is a constant FI.

Hence T is a FRSPOTΓSG.

(2) \Rightarrow (1): Suppose that T is a FRSPOT Γ SG.

Let A be any PO 'right ideal' of T. Then C_A is a FRI.

 \Rightarrow C_A is a constant function.

Let
$$t \in T$$
, since $A \neq \varphi$, $C_A(t) = 1$ implies that $t \in A$

$$\Rightarrow$$
 T \subseteq A.

T = A.

 \therefore T is a RSPOT Γ SG.

Theorem 3.13: "Let T be a POTTSG. T is a FRSPOTTSG $\Leftrightarrow h_{(a \in TTT)} = T = h_T \forall a \in T$ ".

Proof: Suppose that T is a FRSPOTFSG. By above Theorem, T is a RSPOTFSG. Then, we have $(a\Gamma T\Gamma T] = T$.

Therefore $h_{(a \cap T \cap T)} = T = h_T \forall a \in T.$

Conversely assume that $h_{(a\Gamma T\Gamma T)} = T = h_T$

$$\Rightarrow h_{(a\Gamma T\Gamma T]}(t) = h_{T}(t)$$

 \Rightarrow (*a* Γ T Γ T] = T. Then, T is a RSPOT Γ SG. Then by above Theorem, T is a FRSPOT Γ SG.

Definition 3.14: "Let u, v, w be three FSs of T, $(u\Gamma v\Gamma w]$ is

defined by $(u\Gamma v\Gamma w](t) = \bigvee_{t \le r\gamma s \delta w} (u\Gamma v\Gamma w)(p\gamma q \delta r),$

 $\forall t \in \mathbf{T}, \gamma, \delta \in \Gamma$ ".

Definition 3.15: "Let T be a POTTSG and h be FI of T. Then *h* is known as globally idempotent if $(h^n] = (h], \forall n$ ".

Definition 3.15: Let T be a POTFSG. T is known as fuzzy globally idempotent if $(T^n] = (T], \forall n$.

Theorem 3.16: "If T is a POTTSG with unity "e" and h is a FI of "T" with h(e) = 1, then $h = h_T = T$ ".

Proof: Let $r \in T_T$.

Consider $h(r) = h(r\gamma e \delta e) \ge h(e) = 1$. $\therefore h = h_{T} = T$. **Definition 3.17:** a non-zero FI h of POT Γ SG T is known as proper FI if $h \neq C_T = T$.

Theorem 3.18: "Let $\{h_i\}$ be any FIs of a POT Γ SG T. Then the infinite union of FIs is FI of T".

Proof: let $\{h_i\}$ is a FIs of a POTTSG T.

Let $q, r, s \in T$ such that $q \leq r, r \leq s$. $\cup h_i(q) = \max \{h_1(q), h_2(q), h_3(q), ...\}$ Consider $= h_1(q) \vee h_2(q) \vee h_3(q) \vee \dots$ $\geq h_1(r) \lor h_2(r) \lor h_3(r) \lor \dots$ since each h_i is a FI. $= \max \{h_1(r), h_2(r), h_3(r), ...\} = \bigcup h_i(r)$ $\therefore \cup h_i(q) \ge \cup h_i(r)$ if $q \le r$. Consider $\bigcup h_i(q\gamma r\delta s) = h_1(q\gamma r\delta s) \lor h_2(q\gamma r\delta s) \lor h_3(q\gamma r\delta s) \lor \dots \text{Consider, the assumption is true for}$ $\geq h_1(r) \vee h_2(r) \vee h_3(r) \vee \dots$ since each h_i is a "fuzzy lateral ideal". $= \cup h_i(r).$

$$\therefore \cup h_i(q\gamma r \delta s) \ge \cup h_i(r).$$

Similarly,

$$\cup h_i(q\gamma r\delta s) \ge \cup h_i(q)$$
 and

 $\cup h_i(q\gamma r\delta s) \ge \cup h_i(s).$

Hence, $\cup h_i$ is a FI of T.

Definition 3.19: Let T be a POT Γ SG and h be a FI of T. his said to be a maximal if there does not have any proper FI g

of $T \ni h \subset g$.

Theorem 3.20: "If T is a POTTSG with unity e, then the union of all proper FIs of T is the unique fuzzy maximal ideal of T".

Proof: Suppose $h_{\rm M}$ is the union of all proper FIs of T.

$$\Rightarrow h_{\rm M}$$
 is a FI of T

Consider $h_{\rm M}$ is not proper then

$$h_{\rm M} = {\rm C}_{\rm T} \Longrightarrow h_{\rm M}(x) = 1 \,\forall x \in {\rm T}$$

$$h_i(x) = 1 \text{ for some FI } h_i$$

$$\because \cup h_i = h_{\rm M} \Longrightarrow h_i = h_{\rm T} \text{ but } h_i \text{ is proper}$$

Hence $h_{\rm M}$ is a proper FI of T.

 $\therefore h_{\rm M}$ contains all proper FIs of T.

 \Rightarrow $h_{\rm M}$ is maximal FI of T.

If $g_{\rm M}$ is any other maximal FI of T, then $g_{\rm M} \subseteq h_{\rm M} \subseteq C_{\rm T}$.

$$\therefore g_{\mathrm{M}} = h_{\mathrm{M}}.$$

Hence, $h_{\rm M}$ is the unique 'fuzzy maximal ideal' of T.

Theorem 3.21: Let T be a fuzzy left STFSG, then T is fuzzy simple Γ semi group. **Proof:** Assume that T is a fuzzy left STГSG. consider h is a FI of T $\therefore h$ is a FLI of T. Hence h is a constant function Therefore, T is a fuzzy simple Γ semi group. Corollary3.22: "Let T be a fuzzy lateral (right) STTSG, then T is fuzzy simple Γ semi group". **Theorem 3.23:** let T be a POTTSG and c_{λ} be a "Ordered Fuzzy Point"(OFP) of T. If c_{λ} is semi-simple and idempotent, Then $c_{\lambda} \subseteq \langle c_{\lambda} \rangle^{n}$, $\forall n$. **Proof:** If c_{λ} is semi-simple and idempotent. Let $c \in T$ and n is a natural number. $\Rightarrow c_{\lambda} \subseteq \langle c_{\lambda} \rangle^{3}$ is true for n = 3 since c_{λ} is fuzzy semi simple. n-2. *i.e.*, $c_{\lambda} \subseteq \langle c_{\lambda} \rangle^{n-2}$ suppose $< c_{2} >^{n-2} \Gamma < c_{2} > \Gamma < c_{3} >$

$$\supseteq c_{\lambda} \Gamma c_{\lambda} \Gamma c_{\lambda} = c_{\lambda}^{3} = c_{\lambda},$$

 c_{λ} is idempotent. Therefore $c_{\lambda} \subseteq \langle c_{\lambda} \rangle^{n}, \forall n$.

4. Fuzzy Identity and Fuzzy Zero of a POTFSG

Definition 4.1: Let T be a POT Γ SG and *h* be FS of T. Let us define [h) by $[h](r) = \bigvee_{r>s} h(s), \forall r \in T$ where $s \in T$.

Proposition 4.2: Let h, g be FSs of T. The subsequent conditions are true.

1) $h \in T$ 2) if $h \subseteq g$ then $[h] \subseteq [g]$. **Proof:** 1) let $r \in T$, Since $[h)(r) = \bigvee_{r>s} [h)(s), \forall s \in T$ Since $r \ge r \Longrightarrow [h)(r) = \bigvee h(r) \ge h(r)$. Hence $h \subseteq [h]$ 2) If $h \subseteq g$ then $\forall r \in T, h(r) \leq g(r)$,

Thus

$$\begin{bmatrix} h \end{pmatrix} (r) = \bigvee_{r \ge s} (h) (s) \le \bigvee_{r \ge s} g(s) = \begin{bmatrix} g \end{pmatrix} (r), \forall r \in T.$$
Hence $\begin{bmatrix} h \end{bmatrix} \subseteq \begin{bmatrix} g \end{bmatrix}.$

DEFINITION 4.3: An OFP Z_{λ} of a POTFSG T is known as fuzzy left identity of T if $z_{\lambda} \Gamma h \Gamma h = h$ and

 $h \subseteq z_{\lambda}, \forall h \in H(T), z \in T \text{ and } \lambda \in (0,1]$.

DEFINITION 4.4: An OFP z_{λ} of a POTUSG T is known as

fuzzy right identity of T if $h\Gamma h\Gamma z_{\lambda} = h$ and

$$h \subseteq z_{\lambda}, \forall h \in H(T), z \in T \text{ and } \lambda \in (0,1].$$

DEFINITION 4.5: An OFP z_{λ} of a POTISG T is known as fuzzy lateral identity of T if $h\Gamma z_{\lambda}\Gamma h = h$ and

 $h \subseteq z_{\lambda}, \forall h \in H(T), z \in T \text{ and } \lambda \in (0,1].$

DEFINITION 4.6: A FS *h* of a POTFSG T with an identity is called as fuzzy left identity of T if $h\Gamma h_1\Gamma h_2 = h$ and

$$h_1 \subseteq h, h_2 \subseteq h \forall h_1, h_1 \in H(T).$$

DEFINITION4.7: A FS *h* of a POTFSG T with identity is called as fuzzy lateral identity of T if $h_1 \Gamma h \Gamma h_2 = h$ and

$$h_1 \subseteq h, h_2 \subseteq h \forall h_1, h_2 \in H(T).$$

DEFINITION4.8: A FS *h* of a POTTSG T with identity is called as fuzzy right identity of T if $h_1 \Gamma h_2 \Gamma h = h$ and

$$h_1 \subseteq h, h_2 \subseteq h \forall h_1, h_2 \in H(T).$$

DEFINITION4.9: An OFP z_{λ} of a POTTSG T is called as fuzzy zero of T if $z_{\lambda}\Gamma h\Gamma h = h\Gamma z_{\lambda}\Gamma h = h\Gamma h\Gamma z_{\lambda} = z_{\lambda}$ and $h \subseteq z_{\lambda}, \forall h \in H(T)$.

THEOREM4.10: If q_{λ} is a fuzzy PO left zero, r_{λ} is a fuzzy

PO right zero and s_{λ} PO lateral zero of a POT Γ SG T then $q_{\lambda} = r_{\lambda} = s_{\lambda}$ where $\lambda \in [0,1]$.

Proof: Given q_{λ} is fuzzy PO left zero of T.

$$\therefore q_{\lambda} \Gamma h \Gamma g = q_{\lambda} \forall h, g \in H(T) \text{ and } q_{\lambda} \subseteq h$$

$$\therefore q_{\lambda} \Gamma s_{\lambda} \Gamma r_{\lambda} = q_{\lambda} \text{ and } q_{\lambda} \subseteq h \text{ , } \forall h \in H(T).$$

since r_{λ} is a fuzzy PO right zero of T

$$\Rightarrow q_{\lambda} \Gamma s_{\lambda} \Gamma r_{\lambda} = r_{\lambda} \text{ and } r_{\lambda} \subseteq g, \forall g \in H(T).$$

Since S_{λ} is a fuzzy PO lateral zero of T

$$\therefore h\Gamma s_{\lambda}\Gamma g = s_{\lambda}\forall h, g \in H(T) \Rightarrow q_{\lambda}\Gamma s_{\lambda}\Gamma r_{\lambda} = s_{\lambda} \text{ and } s_{\lambda} \subseteq h, \forall h \in H(T).$$

 $\therefore q_{\lambda} \Gamma s_{\lambda} \Gamma r_{\lambda} = q_{\lambda} = r_{\lambda} = s_{\lambda}.$

THEOREM 4.11: "Let T be a fuzzy POTITSG. Then T has atmost one fuzzy zero element".

Proof: let $q_{\lambda}, r_{\lambda}, s_{\lambda}$ be any 3 fuzzy zeros of a POTFSG T.

 $\Rightarrow q_{\lambda}, r_{\lambda}, s_{\lambda}$ be treated as fuzzy left, lateral & right zeros of T resp.

We know that by the above theorem, we have $q_{\lambda} = r_{\lambda} = s_{\lambda}$.

Hence a fuzzy POT Γ SG has at most one fuzzy PO zero element.

5. Operations on Fuzzy POTISG

Definition 5.1: Let $\{h_i\}_{i \in I}$ be the family of FSs of a POTFSG T and I,an index set. Now define intersection, union as follows. $(\bigcap_{i \in I} h_i)(r) = \bigwedge_{i \in I} h_i(r) = \min\{h_1(r), h_2(r), h_3(r) - ---\}, \forall r \in T,$ $(\bigcup_{i \in I} h_i)(r) = \bigvee_{i \in I} h_i(r) = \max\{h_1(r), h_2(r), h_3(r), ---\}, \forall r \in T.$ **Definition 5.2:** "a FS h of a POTFSG T is known as fuzzy

POTISG of T if $(i)q \le r$ then $h(q) \ge h(r)$ (ii)

$$h(q\gamma r\delta s) \ge h(q) \land h(r) \land h(s), \forall q, r, s \in T, \gamma, \delta \in \Gamma".$$

Theorem 5.4: "The intersection of any two fuzzy POTISSGs of a POTISG T is a fuzzy POTISSG of T".

Proof: If h_1 , h_2 be any 2 fuzzy POTTSSG of T. 1) Suppose

 $(h_1 \cap h_2)(q\Gamma r\Gamma s) = h_1(q\Gamma r\Gamma s) \land h_2(q\Gamma r\Gamma s) \ge h_1(q) \land h_1(r) \land h_2(q) \land h_2(r) \land h_1(s) \land h_2(s)$

$$\geq h_1(q) \wedge h_2(q) \wedge h_1(r) \wedge h_2(r) \wedge h_1(s) \wedge h_2(s)$$

$$\geq (h_1 \cap h_2)(q) \wedge (h_1 \cap h_2)(r) \wedge (h_1 \cap h_2)(s), \forall q, r, s \in T.$$

2) Let $q \le r$ Consider:

 $(h_1 \cap h_2)(q) = h_1(q) \wedge (h_2)(q) \ge h_1(r) \wedge h_2(r) = (h_1 \cap h_2)(r).$

 $\Rightarrow h_1 \cap h_2$ is a fuzzy POTLSG of T.

Theorem 5.5: "The intersection of arbitrary family of fuzzy POTISSGs of T is a fuzzy POTISSG of T".

Proof: Let h_1 , h_2 , h_3 , h_4 be the family of fuzzy POTTSGs of T.

1) Consider

$$(\bigcap_{i \in I} h_i)(q \Gamma r \Gamma s) = h_1(q \Gamma r \Gamma s) \land h_2(q \Gamma r \Gamma s) \land ----$$

$$\geq h_1(q) \land h_1(r) \land h_2(q) \land h_2(r) \land h_1(s) \land h_2(s) -----$$

$$\geq h_1(q) \land h_2(q) \land h_1(s) \land h_1(r) \land h_2(r) \land h_2(s)$$

$$\geq (\bigcap_{i \in I} h_i)(q) \land (\bigcap_{i \in I} h_i)(r) \land (\bigcap_{i \in I} h_i)(s)$$

2) let $q \leq r$
Consider

$$(\bigcap_{i \in I} h_i)(r) = h_1(r) \land h_2(r) ---- \geq$$

$$h_1(s) \wedge h_2(s) - - - = (\bigcap_{i \in I} h_i)(s)$$

 \therefore The intersection of arbitrary family of fuzzy POT Γ SSGs of T is a fuzzy POT Γ SSG of T.

Definition 5.6: Let *h* be a FS of a POTTSG T. The smallest fuzzy POTTSG of T containing *h* is known as fuzzy POTTSG of T generated by *h* and is denoted as (h).

Theorem 5.7: Let *h* be a FS of a POTTSGT. Then (h) = The intersection of all fuzzy POTTSG s of T containing *h*.

Proof: Let = {g / g is a fuzzy Po Γ semi group of T and $h \subseteq g$ }

since T itself is a fuzzy POT Γ SG and $h \subseteq T$ $\Rightarrow T \in \Delta \Rightarrow \Delta \neq \emptyset$

Let
$$H^* = \bigcap_{g \in \Delta} g_1 \Longrightarrow H^* \neq \emptyset$$
 by above theorem, H^* is a

fuzzy POTΓSG of T.

Since $H^* \subseteq g_1, \forall g_1 \in \Delta, H^*$ is the smallest fuzzy POTFSG of T containing h.

Hence $H^* = (h)$.

6. Conclusion

The study of fuzzy PO Ternary Γ Sub Semi Group of POT Γ SG T, we introduced the notions of FT Γ SSG, fuzzy simple POT Γ SG, fuzzy identity and fuzzy zero of T. Also showed some more relations between them. Hopefully, some more new results in this topic shall be obtained in the upcoming papers.

References

 Anjaneyulu A., Structure and ideal theory of semi groups – Thesis, ANU (1980).

- [2] Clifford A.H and Preston G.B., The algebraic theory of semi groups vol I (American Math. Society, Province (1961)).
- Clifford A.H and Preston G.B., The algebraic theory of semi groups vol II (American Math. Society, Province (1967)).
- [4] G. Mohanraj, D. Krishna Swamy, R. Hema, On fuzzy m-systems and nsystems of ordered semi group, Annals of Fuzzy Mathematics and Informatics, Volume X, Number X, 2013.
- [5] J. N. Mordeson, D. S. Malik, N. Kuroki, Fuzzy Semigroups, Springer-Verlag Berlin Heidelberg Gmbh, 2003(E.Book)
- [6] L. A. Zadeh, Fuzzy Sets, Inform. Control.,8(1965) 338-353.
- [7] N. Kehayopulu, M. Tsingelis, Fuzzy Sets in Ordered GrouPOids, Semigroup forum 65(2002) 128-132.
- [8] N. Kehayopulu, M. Tsingelis, On weakly Prime ideals of ordered Semigroups, Math. Japan. 35(1990) 1051-1056.
- [9] N. Kehayopulu, On Prime, weakly prime ideals in ordered semigroups, Semigroup Forum 44(1992) 341-346.
- [10] Padmalatha and A. Gangadhara Rao, Anjaneyulu A., PO Ideals in partially ordered semi groups, International Research Journal of Pure Algebra-4(6),2014.
- [11] P.M. Padmalatha and A. Gangadhara Rao, Simple partially ordered semi groups, Global Journal of Pure and Applied Mathematics, Volume 10, Number 3(2014).
- [12] Xiang-Yun Xie, Jian Tang, Prime fuzzy radicals and fuzzy ideals of ordered Semi groups, Information Sciences 178 (2008), 4357–4374.
- [13] X. Y. Xie, Fuzzy ideals in Semi groups, J. Fuzzy math.,7(1999)357-365.
- [14] X. Y. Xie, On prime fuzzy ideals of a Semi groups, J. Fuzzy math.,8(2000)231-241.
- [15] V. Siva Ramireddy, "Studied on ideals in partial ordered ternary semi groups."
- [16] J. M. Pradeep, A. Gangadhara Rao, P. Ramyalatha, L. Achala, "Completely Prime Fuzzy, Prime Fuzzy Ideal of a PO Ternary Semi Group."
- [17] S. Chandra, A. Singh and P. K. "Physico chemical, "Analysis of Water from Various Sources and Their Comparative Studies." (Jul. - Aug. 2013).