

Electrical Safety Audit of Central India Institute for Medical Science (CIIMS), Bajaj Nagar, Nagpur

Yogesh Bais¹, Saurabh Bhattad², Rutwik Kalbandhe^{3*}, Veena Gaidwad⁴, Nitesh Choudhari⁵, Bharat Khapekar⁶, Mangesh Kumbhare⁷, Niraj Kushwaha⁸, Nilesh Kawale⁹

¹Assistant Professor, Department of Electrical Engineering, Govindrao Wanjari College of Engineering & Technology, Nagpur, India ^{2,3,4,5,6,7,8,9}Student, Department of Electrical Engineering, Govindrao Wanjari College of Engineering & Technology, Nagpur, India

Abstract: "Safety first and always" should be the motto of every place i.e., buildings, industries & Utility. In long run, this approach helps indirectly in realizing tangible savings for the organization as it prevents accidents, which normally result in loss of manhours, damage to equipment's and sometimes loss of life also. Safety of personnel and equipment is of paramount importance. The priorities are given below in the order:

- a) Safety of personnel Self, colleagues and public.
- b) Safety of equipment.
- c) Continuity and high quality of power supply.

Electricity constitutes one of the major sources of ignition for fire accidents and explosions. Over 20% of fire world wide and 40% fire in India are due to faulty electric circuits. Besides equipment damage and property loss, electrical hazards also include injuries and fatalities to personnel due to electric shock. Electricity having become an indispensable part of our life; electrical risks are to be managed effectively. Timely inspection and preventive maintenance of electrical equipment and its connected systems will go a long way in ensuring safer operations, for a longer period of time, of the electrical installations.

Keywords: Electrical safety audit.

1. Introduction

Hospitals have many patients admitted in critical condition. Many people who would have mobility issues and many would not even be alert in case of an emergency. Hence by ensuring Electrical Safety in hospitals, we can prevent Fire Accidents. Hospitals stack a lot of combustible materials like chemicals, Cylinders, Surgical Equipment, etc. And many hospitals also have an inbuilt Kitchen or Canteen. A Fire Accident may have a lot of casualties as the Fire may become uncontrollable in minutes. So, the hospital management should ensure that their buildings are Safe all the times from faulty electric circuits.

2. Objective

The main objective of Electrical Safety audit is to Study & check electrical Installation from Electrical safety point of view and identify/point out deficiencies & areas of improvement in the system. Which will help to reduce,

- 1) Electrical Fire accidents
- 2) Loss of Property
- 3) Loss of Life

- 4) To avoid emergencies
- 5) To reduce risk

3. Methodology

A. Approach & Methodology for Electrical Safety Audit

1) Kick off meeting

Introductory meeting and discussions on approach and methodology with reference to the scope of work with Hospital Management & officers.

2) Data collection for review of documentation/drawing /records

List of required data/drawings were submitted to the concerned officers, for

- Various test reports for earth pits, transformer, motors and cables.
- Different drawings
- Statutory compliances
- Electricity bills
- Maintenance & failure records

3) Standard data collection sheet for field study

Standard data collection sheet was used as per applicable IS to be filled-in at site keeping in mind to collect the data related to the improvement in System from electrical safety point of view.

4) Field study

Visit was carried out to collect the system information as per standard inspection formats and observations on electrical installation to identify electrical hazards.

Verification of electrical Single Line Diagrams was carried out with reference to actual installation.

Inspection and review of protection devices/system of the electrical installation was carried.

5) Measurements & Testing

Measurement of different parameters like, Earth resistance, insulation resistance, Power Parameters, Lux Level, Testing of Voltage between Neutral and earth was carried out to evaluate electrical system.

6) Data analysis & submission of report

Review of documentation/drawing/records and analysis of collected data and measurements was carried out in comparison

^{*}Corresponding author: rutkalbandhe@gmail.com

with standards and identification of areas for improvements was done. Recommendation for improvements was suggested for the same. Discussion of these observation & recommendations was carried out with management personnel and by incorporating inputs from them final report was submitted.

4. Details of Electrical System

Table 1 Specifications Description Details Supply Voltage KV 11 Transformer Rating KVA 630 **DG Set Rating** 250 DG Set No.1 KVA DG Set No.2 KVA 160 DG Set No.3 KVA 140 No. of Floors Ground+4 Floor

Table 2						
Diesel generator specification						
Particulars	DG-1	DG-2	DG-3			
Make	Gimco	Cummins	Ashok Leylands			
Frame No.	A6440	NLE0324	SK460			
Machine No.	NO8127650	4050324	N15C123124			
KVA / KW	250 KVA	140 KVA	160 KVA			
Amps	348A	195A	222.6A			
Voltage	415V	415V	415V			
R.P.M.	1500	1500	1500			
Frequency	50HZ	50HZ	50HZ			
Insulation Class	Н	Н	Н			
Power Factor	0.8	0.8	0.8			
Phase	Three	Three	Three			

Table 3 Transformer specifications

Transformer specifications				
Parameter	Transformer No.1			
KVA	630			
Volt's on load HV	11000			
Volt's on load LV	433			
Amps HV	33			
Amps LV	840			
Phase	3			
Transformer No.	14421			
Frequency Hz	50			
Specification No.	2026			
Year of Manufacture	2008			
Impedance Voltage%	5.08			
Vector Group	DYn11			
Cooling Type	ON AN			
Oil in Liters	750			
Total weight	2430 Kg			
Make	Ramkrishna Electrials Pvt.Limited			

5. Thermal Scanning

Thermal imaging is simply the process of converting infrared (IR) radiation (heat) into visible images that depict the spatial distribution of temperature differences in a scene viewed by a thermal camera.

Fig. 2. Sample thermal image-1

Observation: Temperature rise is alarming. Recommendation: It should be checked and attended immediately.

Observation: Temperature is found very high. Recommendation: It should be checked and attended at the earliest opportunity.

Fig. 4. Sample thermal image-3

Observation: Temperature is found high.

Recommendation: It should be checked during next scheduled maintenance activity.

	Electrical safety identifications, then causes		D.1. 14 6.
Electrical safety Identifications/Observation	Causes / Impact	Recommendations	Corrections
Drotoction device like ELCP/PCCP at	Absonge of ELCP/PCCP will regult into	ELCD / DCCD of appropriate rating & 20m A	Ligh
DP Incomer not provided	Absence of ELCB/RCCB will result linto	lookago current consitivity should be provided	riigii
DB incomer not provided	arth lookage current, cloctrical circuits	leakage current sensitivity should be provided.	
	will not be isolated and may load to fire/		
	accident		
Protection devices are found hypassed	In case of fault_circuit will not be	Provide proper protection devices	High
rotection devices are found bypassed	isolated and may lead to fire/accident	r tovide proper protection devices	Ingn
Brick Masonry with Top cover is not	Farth pits are not maintained as per	Brick Masonry with Top cover should be	Medium
provided at some of the earth pits	standard	provided	Weatum
There is no interlocking between	GOD /AB Switch can be operated on	Electrical interlocking should be done with GOD	Medium
GOD/AB Switch handle & Outgoing	load which may cause heavy sparking	/AB Switch handle & incomer VCB or Outgoing	meanan
ACB for transformer	foud, which may cause heavy sparking.	ACB, such that GOD/AB Switch will operate on	
		no load only i.e., when circuit breaker is in off	
		position.	
Rubber mat not provided	May cause shock due to leakage current	Rubber mat should be provided	High
I	during operation	1	e
CO2 fire extinguishers not provided	May create emergency in case of fire.	Provide CO2 fire extinguishers.	High
Proper lighting arrangement not	It will increase downtime in case of	Proper lighting arrangement should be provided.	High
provided.	emergency.		-
Firefighting bucket with dry sand not	May create emergency in case of fire.	Firefighting bucket with dry sand not provided	High
provided			
Transformer oil test for BDV and	To ensure that it is still fit for purpose	Transformer oil testing for BDV and Acidity	Medium
Acidity not carried out		should be carried out	
Updated Electrical Single line	It will increase downtime in case of	Updated Electrical Single line diagrams is not	Medium
diagrams is not available	emergency.	available	
Testing of provided Relay/releases is	Faulty protection does not isolate the	Testing of provided protection Relay/releases	High
not carried out	supply in case of fault.	should be carried out.	
Labeling on the sub panel & DB's for	May create confusion in case of problems	Proper labeling on the switchboard for the	Medium
the identification of circuits not	& will increase downtime in case of	identification of circuits should be provided to	
provided.	emergency.	decrease downtime	
Cable glands/Elevible conduits glands	For mechanical support	Gland should be provided for mechanical support	Medium
for mechanical support to cables are	For meenamear support	to cables/flexible conduit & to avoid strain on	Wedlum
not provided		electrical connections	
Concealed type wiring is not provided	Open wiring may cause external fire	Provide Concealed type wiring	High
Overheating is observed	May cause fire	Terminal connections should be check and	High
o vomenting is observed	Thuy clube file	attended.	ingn
Stabilizer terminal cover is not	May cause shock	Proper cover should be provided	High
provided		1 I	e
Cable tags are not provided	May create confusion in case of problems	Proper cable identification tags should be	Medium
	& will increase downtime in case of	provided to avoid confusion in case of problems	
	emergency.	& to decrease downtime.	
current harmonics distortion is there	Current harmonics cause unwanted	Electrical Switchgears & cables should not be	Medium
current narmonics distortion is there	current and overheating	loaded up to their rated capacity. They should be	wiedium
	current and overheating.	derated	
Current unbalance is there	It may cause extra heating	Load should be equally distributed in 3 phase	Medium
Carron unoutline is there	a may cause extra nouting	equally as far as possible	

Table 4 ectrical safety identifications, their causes/impact & recommendation

Fig. 5. Sample thermal image-4

Observation: Temperature is found ok.

Recommendation: Temperature should be monitored regularly.

6. Conclusion

Identified deficiencies are categories into low, medium and high-risk analysis. It is found that the installation is in medium risk.

References

- [1] CEA (measures relating to Safety and Electrical Supply) Regulations, 2010.
- [2] IS 14489, Code of Practice of Occupational Health & Safety Audits.
- [3] Good engineering practices followed in similar establishments.
- [4] National Building Code, 2015.
- [5] NFPA (applicable codes to Fire Safety).
- [6] Various Indian Standard (BIS)-Electrical.