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Abstract: This paper presents the prosthetic arm based on 

electroencephalography by signal acquisition and processing.  

Around the world, there are 5-6 million people with partial hand 

amputation due to traumatic accidents, various health issues and 

wars. Recent advancements show prosthetic arms are purely 

mechanical and tedious. In order to solve this problem, Brain-

Computer Interface (BCI)-based control strategies were 

introduced into robot control. The methods adopted should take 

into consideration the nature of the application, for example, 

Electroencephalography (EEG) signal is ideal for our application 

due to its convenient approach. Particularly, for EEG-based BCI 

systems, a set of sensors are needed to acquire the EEG signals 

from different brain areas. The Fast Fourier Transform algorithm 

is adopted for feature extraction of the EEG signals and python is 

used to save the data in .txt file. The .txt file is imported into 

MATLAB and data analysis is done by signal processing and 

analysis tool. Next, Signal classification is done and then the signal 

is carried to end-effector. Our findings indicate that the rise of 3D 

printing industry, advanced printers and materials will allow 

students to develop more ‘commercial-like prosthetic devices – 

robust and durable systems that could benefit a wide range of 

people with a missing limb. With ongoing research, more 

technological advancements in EEG would definitely result in 

improvements which will hopefully lead to a system that is more 

durable and offers improved dexterity and control.  

 

Keywords: Electroencephalography, Brain-Computer Interface 

(BCI), Steady-state visual evoked potential (SSVEP), Fast Fourier 

Transform (FFT). 

1. Introduction 

The advancement of technologies in this era has great impact 

on human life. Now, people are able to travel faster and 

communicate in a more convenient way than in the past. 

Assistive computers and machines provide conventional input 

devices such as a keyboard, a mouse, or a joystick to be 

operated by the users. These devices are, however, difficult to 

be used by elderly or disabled individuals. For this reason, 

special interfaces such as sip-and-puff systems, single switches, 

and eye-tracking systems have been proposed [1]. Nevertheless, 

these special interfaces do not work for people suffering from 

severe neuromuscular diseases who cannot convey their 

intentions or operations to computers or machines with these 

interfaces. Consequently, even autonomous electric  

 

wheelchairs are unable to transport disabled people to their 

desired locations. Hence, there exists a growing demand and 

necessity for developing an alternative interface that can be 

used by the severely disabled population for communication 

with autonomous systems.  

Brain-computer interface (BCI) system has been developed 

to address this challenge. BCIs are systems that can bypass 

conventional channels of communication [2]. A brain-computer 

interface (BCI) is a software and hardware system for 

establishing direct communication between human and 

computer, which enables people to send commands to the 

external world through brain activities, without depending on 

brain’s normal output pathway of peripheral nerves and 

muscles activities [3]. BCI system is also useful to improve 

precision of control for vehicles and robots in hostile 

environments such as space, to let people live in intelligent e-

homes, to integrate new electronics body enhancements, and to 

play and communicate in novel ways [4]. There are a vast group 

of control signals available for BCI systems. These signals can 

be generated at will by people, thus enabling BCI systems to 

interpret their intentions for command-and-control purposes. 

Particularly, in EEG-based BCI systems, the commonly used 

control signals are such as slow cortical potentials (SCP), event-

related synchronization and desynchronization (ERS/ERD), 

event-related potentials (ERP), and visual evoked potentials 

(VEPs) [5]. The focus of this thesis is on steady-state visual 

evoked potential (SSVEP). In fact, when stimulated by a 

repetitive flicker of frequency 6 Hz and above, some sinusoidal 

oscillatory waveforms with the frequency same as the stimulus 

or its harmonics would be observed from the scalp of a person 

[6]-[8].  

In this paper, an SSVEP-based BCI system for Robot Arm 

control is proposed. The system consists of a 16-channel EEG 

recording system for EEG measurement. Visual stimuli are 

developed on a laptop LCD screen for eliciting SSVEPs. 

Meanwhile, MATLAB is used as the main tool for signal 

processing of EEG signals and command recognition. The Fast 

Fourier Transform algorithm is adopted for feature extraction 

of the EEG signals. Signals are acquired by using a Bluetooth 

device Emotiv EPOC + which is a 16-channels electrode, 
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placed on the scalp and python is used to save the data in .txt 

file. The .txt file is imported into MATLAB and data analysis 

is done by signal processing and analysis tool. Frequency 

domain algorithm tool for generating the frequency response of 

the data and plotting Magnitude and phase diagram. Prior to 

controlling the movement of Robot Arm. Finally, the subjects 

are instructed to move the Robot Arm in specific directions and 

the performance of the system in real-time is observed and 

analyzed. 

2. Brain-Computer Interface (BCI)  

Generally, a typical BCI system comprises five main 

consecutive stages, namely signal acquisition, signal pre-

processing or signal enhancement, feature extraction, 

classification, and the control interface. The signal acquisition 

stage captures the brain signals and may also perform noise 

reduction and artefact processing. The aim of the pre-

processing block is to bring the signals into a suitable form for 

further processing purposes. The discriminative information in 

the recorded brain signals is identified and extracted during the 

stage of feature extraction. Once measured, the signal is 

mapped onto a vector containing effective and discriminant 

features from the observed signals, upon which classification 

can be done. Feature extraction has always been a challenging 

task in the BCI system because brain signals are mixed with 

other signals originating from a finite set of brain activities that 

overlap in both time and space. The classification block 

classifies the signals based on the constructed feature vectors. 

Hence, the choice of good discriminative features is essential to 

achieve effective pattern recognition so as to correctly decipher 

the user’s intentions. Finally, the control interface translates the 

classified signals into meaningful commands for any device 

connected, such as a wheelchair, Robot arm or computer. 

A. Electroencephalography (EEG) 

EEG is the recording of underlying human brain activity 

produced by the summation of electrical potentials generated 

by a large population of neurons that propagated through the 

skull. EEG is, as compared to MEG or fMRI, widely available, 

compact, inexpensive, usable at the bedside, and offers a 

reasonable trade-off between temporal and spatial resolution 

[24]. The major drawback of EEG, however, is the low SNR 

due to the poor-quality signals that have to cross the scalp, skull, 

and many other layers before reaching the recording electrodes. 

In addition, EEG is greatly distorted by background noise 

generated either inside the brain or externally over the scalp.  

EEG often appears as an alternating type of electrical activity 

comprise of various frequencies with typical amplitude ranging 

from 2 to 100 µV. The early studies are more towards the 

investigation of EEG for the diagnosis of neurological disorders 

and cognitive neuroscience studies. As the EEG normally 

appears as a random wave with various rhythms, quantitative 

measurement of EEG signal frequencies produces a convenient 

way to classify the signals. According to the frequency ranges 

that they occupy, EEG is categorized into several groups. As 

discussed in the above paragraphs, EEG is recorded by using 

electrodes. The placement of electrodes over the scalp is 

commonly based on the International 10-20 system which has 

been standardized by the American Electroencephalographic 

Society [6]. The system is based upon measurements of four 

standard points on the scalp, which is nasion, inion, left and 

right preauricular point the transverse and median planes divide 

the skull from these points. The electrode locations are 

determined by marking these planes at the intervals of 10% and 

20% as shown in Figure.2. By following the standard procedure 

of the 10-20 system, the electrode locations are reproducible on 

different subjects.  

The EEG signal is measured as the potential difference over 

time between signal or active electrode and reference electrode, 

where the reference electrode will be the same for all channels. 

 
Fig. 1.  The International 10-20 electrode placement system 

 

There is no standard position for common reference 

electrodes but normally an inactive position that provides a 

fairly constant electrical potential will be chosen. Midline 

positions such as Cz and Fpz are sometimes used because they 

do not amplify the signal in any particular hemisphere. Multi-

channel configurations can comprise up to 128 or 256 active 

electrodes. These electrodes are made up of silver chloride 

(AgCl). A good electrode application should create an electrical 

contact with an ideal impedance of below 5 kΩ to record an 

accurate signal. 

B. The SSVEP-Based Controlling System 

SSVEP are usually elicited through cathode-ray tube (CRT) 

monitors, light-emitting diodes (LEDs), or liquid crystal display 

(LCD). Experimental results proved that the spectrum of LED 

flicker was very simple which includes only the fundamental 

frequency and its harmonics. It was found that there were many 

high-frequency components related to the fresh frequency in the 

CRT spectrum low-frequency components in the LCD flickers 

except for the fundamental frequency and its harmonics.  

There are several factors that contribute to the quality of the 

elicited SSVEP. One experiment which investigates the 

influence of stimuli colour on SSVEP-based BCI wheelchair 

control had been conducted by Singla et al. Four different 

stimuli colours were compared and experimental results 

showed that SSVEP response with violet stimuli are better than 

that with green, red, and blue stimuli besides, the patterns of the 

stimuli also affect the quality of the recorded signal. The 

commonly used patterns are such as letters, rectangles, 

checkerboards, or arrows which alternate between two colours 

or patterns at specific intervals.  
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Fig. 2.  SSVEP based controlling system 

3. Implementation Methods 

A. Hardware Implementation 

  The hardware system was composed is 14 channel (2 

reference channels) Emotiv EPOC+ signal acquisition device, 

Prosthetic arm, Arduino UNO/MEGA, Power Supply and 

Voltage Regulators. 

EMOTIV EPOC+ is the device used to acquire brain waves. 

Electrodes are placed on the scalp. It is a wireless device, raw 

signals are saved in a .txt file wirelessly using a Bluetooth 

device and software, Emotiv Research Edition SDK v2.0.0.20 

Installer which came along with the hardware package. 

PROSTHETIC ARM, create an operative low-cost 3D printed 

prosthetic arm there are copious designs and making 

challenges. We aim to develop an apparent mechanical model 

of the arm and electrical system drives which determines the 

functionality resemblance of the device impersonating the 

human arm. The goal is to develop a prosthesis that has the 

ability to benefit people with missing hands. We aim to build 

an affordable prosthetic which is marginally available for 

amputees.  

The modularity of the arm: Amputation can happen 

anywhere along the arm and is different in every case. We aim 

to design an ideal design that supports a connection to a stump 

positioned anywhere along the arm. Scalability and 

Mathematical Model: The model should be so designed in order 

to have control over the degrees of freedom of the arm. The 

electrical motors should facilitate the free functioning of the 

arm. The arm should be strong enough to withhold the weights 

and any external stress and help in providing balance to the 

amputee. 

 

 
Fig. 3.  Fingers are controlled by tendons actuated through servo motors 

placed in the forearm 

 

Arduino Uno is a microcontroller board based on the 

ATmega328P It has 14 digital input/output pins (of which 6 can 

be used as PWM outputs), 6 analogue inputs, a 16 MHz quartz 

crystal, a USB connection, a power jack, an ICSP header and a 

reset button. It contains everything needed to support the 

microcontroller; simply connect it to a computer with a USB 

cable or power it with an AC-to-DC adapter or battery to get 

started. The Arduino Uno can be programmed with the IDE 

(Arduino Software (IDE)).   

B. Software Implementation 

The software used for collecting the raw data from Emotiv 

PRO software and Emotiv Research Edition SDK v2.0.0.20 

Installer for the process of signal pre-processing is MATLAB. 

 

 
Fig. 4.  EMOTIVPRO software 

 

Data Pre-Processing: 

In Bandpass Filtering of raw EEG Signals, frequencies that 

do not fall within the alpha and beta bands are eliminated 

because they do not reflect visual processing in the occipital 

region. This is achieved by constructing a 4th order Butterworth 

Infinite-Impulse Response (IIR) bandpass filter with a passband 

of 6 Hz to 30 Hz using the Signal Processing Toolbox in 

MATLAB. The main reason for selecting an IIR filter over 

Finite-Impulse Response (FIR) filters is due to the advantages 

of IIR filters which provide sharp cut-off with a much lower 

filter order and thus, low computational requirements as 

compared to FIR filters. Each electrode is connected to one 

input of a differential amplifier (one amplifier per pair of 

electrodes); a common system reference electrode is connected 

to the other input of each differential amplifier. Most EEG 

systems these days, however, are digital, and the amplified 

signal is digitized via an analogue-to-digital converter, after 

being passed through an anti-aliasing filter. Analogue-to-digital 

sampling typically occurs at 256–512 Hz in clinical scalp EEG; 

sampling rates of up to 20 kHz are used in some research 

applications. During the recording, a series of activation 

procedures may be used. The digital EEG signal is stored 

electronically and can be filtered for display. Typical settings 

for the high-pass filter and a low-pass filter are 0.5–1 Hz and 

35–70 Hz respectively. The high-pass filter typically filters out 

slow artefacts, such as electro galvanic signals and movement 

artefacts, whereas the low-pass filter filters out high-frequency 

artefacts, such as electromyography signals. An additional 

notch filter is typically used to remove artefacts caused by 
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electrical power lines (60 Hz in the United States and 50 Hz in 

many other countries). 

 

 
Fig. 5.  Raw EEG signal on Time vs. Amplitude curve 

 

 
Fig. 6.  Filtered EEG signal on Time vs. Amplitude curve 

 

Feature Extraction: 

 For the SSVEP-based BCI system, a method to extract the 

valid frequency in a relatively short time is the core problem. 

As discussed previously, the SSVEP response has the same 

fundamental frequency as the stimulus. Therefore, methods to 

determine the power spectrum in the frequency domain can be 

employed to extract the meaningful EEG signal features. The 

power spectrum methods analyze the recorded EEG signals 

with the fast Fourier transform (FFT) algorithm of which the 

power for each frequency used in the BCI system is computed. 

In fact, Fourier transform is the most common method for 

examining the activity at different frequencies due to its low 

computational efforts, despite other feature extraction 

techniques such as wavelet transform (WT) being able to 

provide better time-frequency representation for the non-linear 

EEG signals. Zhang et al. had developed a CWT-based SSVEP 

classification method for the BCI system. Although the 

experiment results showed that the implementation of wavelet 

transform provided precise measurements of how the frequency 

content of an EEG waveform changes over time, the method is 

not often used as it required higher computational effort but is 

least necessary. 

Signal Classification: 

Threshold frequency: 

In this work, the data classification is done by using threshold 

frequency, which is a relatively old classification technique 

developed by Vapnik and has shown to perform efficiently in 

several real-world problems, including BCI. Basically, SVM is 

a binary classifier that can separate two classes by using an 

optimal hyperplane which maximizes the separating margin 

between the two classes. 

  

 
Fig. 7.  Classification by setting the Threshold Frequency 

 

In this context, after signal pre-processing and feature 

extraction of the raw EEG data obtained, we are using machine 

learning for signal classification and training of the model.  

There are different classifiers like Multilayer Perceptron 

(MLPNN), Support Vector Machines (SVM), K-Nearest 

Neighbors (KNN) etc., which can be used for signal 

classification. 

Multi-layered Perceptron Neural Network (MLPNN): 

 Here we are implementing Multilayer Perceptron Neural 

Network (MLPNN) classifier. The architecture of MLPNN may 

contain two or more layers. A simple two-layer ANN consists 

only of an input layer containing the input variables to the 

problem and an output layer containing the solution of the 

problem. This type of network is a satisfactory approximator 

for linear problems. However, for approximating nonlinear 

systems, additional intermediate (hidden) processing layers are 

employed to handle the problem’s nonlinearity and complexity. 

Although it depends on the complexity of the function of the 

process being modelled, one hidden layer may be sufficient to 

map an arbitrary function to any degree of accuracy. 

 The determination of an appropriate number of hidden layers 

is one of the most critical tasks in neural network design. The 

most popular approach to finding the optimal number of hidden 

layers is by trial and error. In the present study, MLPNN 

consisted of one input layer, one hidden layer with 21 nodes and 

one output layer. Training algorithms are an integral part of 

ANN model development. A good training algorithm will 

shorten the training time while achieving better accuracy. 

Therefore, the training process is an important characteristic of 

the ANNs, whereby representative examples of the knowledge 

are iteratively presented to the network so that it can integrate 

this knowledge within its structure. There are a number of 

training algorithms used to train an MLPNN and a frequently 

used one is called the backpropagation training algorithm which 

is based on searching an error surface using gradient descent for 

points with minimum error, is relatively easy to implement. 

 In this method, we use lifting-based discrete wavelet 

transform (LBDWT) coefficients of EEG signals as an input to 

the classification system and obtain required discrete outputs. 

We provide faster wavelet decomposition in multi-channel 

EEG without any special hardware, by using LBDWT in a 
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multi-channel EEG. 

  We can divide four-channel EEG recordings into sub-bands 

frequencies by using LBDWT. Since four-frequency band, 

which are alpha (D4), beta (D3), theta (D5) and delta (A5) is 

sufficient for the EEG signal processing, these wavelet sub-

band frequencies (delta (1—4 Hz), theta (4—8 Hz), alpha (8—

13 Hz), beta (13—30 Hz)) are applied to MLPNN input. Then 

we take the average of the four channels and give these wavelet 

coefficients (D3—D5 and A5) of EEG signals as an input to 

ANN. The MLPNN was designed with LBDWT coefficients 

(D3—D5 and A5) of EEG signal in the input layer; and the 

output layer consisted of one node representing whether the 

movement of the prosthetic arm was detected or not. A value of 

“0” is assigned when the experimental investigation indicates 

no hand movement and “1” for a movement in hand. 

 
Fig. 8.  Flow chart EEG pattern 

4. Discussions 

1. Signals are elicited and trained by Emotiv- EPOC device 

with greater accuracy.  

2. Visual stimuli that give the best SSVEP response from 

MATLAB is developed.  

3. The obtained raw data is pre-processed and Implementation 

of feature extraction and classification for real-time EEG 

signals is done. 

4. Hardware interface between the host laptop and prosthetic 

arm is developed.  

5. A prosthetic arm is developed by using EEG and real-time 

evaluation on the constructed system is performed. 

Funding: 

The overall cost excluding the EEG device is approximately 

300 USD. This includes the prosthetic arm’s 3D printing, 

components like battery, Arduino, Sensors and Servo motors. 

The Emotiv EPOC+ i.e., EEG device costs 1000 USD was 

provided for our research by our university. The cost of other 

EEG devices varies according to their specifications.  

Overall System Performance: The final system provides 

relatively good performance and characteristics for a prototype 

3D printed model. The device is fast and responsive to 

electroencephalography user input but offers limited strength. 

Over the course of testing the system has proven to be reliable 

and has required minimal maintenance since being assembled. 

The biggest downfall of this design is its lack of toughness. 

Certain regions such as the wrist are at a high risk of breaking 

if the device is subject to moderate forces. In the real world, a 

practical prosthetic arm must be able to absorb sudden shocks 

and support heavy loads without failing. The presented device 

provides a platform for future research by final year engineering 

students to develop and test advanced prosthetic designs such 

as sophisticated EEG control algorithms, integrated pressure 

feedback and other advanced bio-mechatronic concepts and 

designs. 

5. Results 

We aim to develop a real-time SSVEP-based BCI system for 

the command and control of prosthetic hands. For effective 

SSVEP response, which is dependent on colour and size of 

flickers and distance (form observer to the subject), the 

dominating one is colour. 3 different colours red, violet and 

black are used to check out the optimal colour which gave 

approximate frequency to the frequency of flickers. 

Our objectives in this part work include: 

 Development of visual stimuli that give the best 

SSVEP response by using high timing precision 

software such as Psychophysics Toolbox from 

MATLAB. 

 Development and implementation of feature 

extraction and classification algorithms for real-

time EEG signals processing and command 

recognition  

Test conducted: 

 Offline test- signals are taken, converted to .csv file 

then analyzed in MATLAB and transmitted to 

Arduino.  

 

Analysis of Different Brain Signals: 

 
Fig. 9.  Brain signals 

 

Analysis of Different Alpha, Beta, Theta, Delta Signals in 

both Time and Frequency Domains 

 
Fig. 10. Alpha, Beta, Theta, Delta Signals 
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Fig. 11.  Raw EEG Signals with 32 Channel in EEGLAB 

 

 
Fig. 12.  Individual channel response 

 

 

 
Fig. 13.  MATLAB command window for time and frequency domain 

6. Conclusion 

The initial aim was to develop a low-cost 3D printed 

prosthetic arm. The goals and expectations for this paper have 

been achieved and it is hoped that the presented body of work 

allows for several new thesis topics to be researched in the 

future. 

Benefits to an Amputee: At this stage, the presented 

prosthetic arm is not at a state where it can be used by an 

amputee – it is more so a low-cost bionic arm. With the design 

of a proper socket connection, the possibility exists for the 

University to arrange a collaboration with a medical institute to 

allow the device to be tested and used by amputees. Such testing 

would be invaluable in analyzing and improving the device’s 

performance. 

The paper discussed the development and tested advanced 

prosthetic designs such as sophisticated EEG control 

algorithms, integrated pressure feedback and other advanced 

bio-mechatronic concepts and designs. With the future growth 

of the 3D printing industry advanced printers and materials will 

allow students to develop more ‘commercial-like prosthetic 

devices – robust and durable systems that could benefit a wide 

range of people with a missing limb. With ongoing research, 

improvements will hopefully lead to a system that is more 

durable and offers improved dexterity and control. Perhaps a 

future design will someday benefit amputees and improve the 

quality of people’s lives. 
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