
International Journal of Research in Engineering, Science and Management

Volume 5, Issue 1, January 2022

https://www.ijresm.com | ISSN (Online): 2581-5792

*Corresponding author: sayirosshhun@gmail.com

63

Abstract: For the past few decades, the growth in usage of

mobile phones has been increasing abnormally. Recent surveys

hypothesize most of the mobile phone market segment is benignly

dominated by Android Operating System and this made the

Android OS (Operating System) the most vulnerable Operating

System; as more users are adopting to use Android OS (Operating

System) most often, malware attacks on Android operating

systems have been increasing, this can be considered as one of the

significant issues and a security threat for every mobile phone

users. For the past decade or so, we have been seeing many

malware detection software which has adopted a technique called

Signature-Based malware detection, which is used to detect

malware in Android applications, as the name describes that

software extracts a string called the signatures or package name

from the input app or APK (Android application package) and

tries to predict the presence of malware. However, this approach

is limited to identifying only a few known malware. In short, the

malware detection software will extract the signature from the

Android application and compare it with a set of publicly available

databases where package names of known malware apps are

available, which contains a list of package names of popular

malware applications. The most efficient way of identifying

unknown malware is to extract more information regarding the

apk. So the point is how we can extract the data within the scope

of user permission? So, any tool or a script can find this

information in the Android manifest file of the target APK

(Android application package). Usually, every android app has

this file to let OS know what kind of permissions are requested,

and it also stores metadata of the application. So, from the

Android Manifest File, the signatures and the approvals defined

in that file are then being extracted and compared with the dataset

through an artificial neural network; this model will be trained

from a huge malware dataset and the input apk, by this way the

neural network is capable of identifying the malware by analyzing

the extracted permissions and strings.

Keywords: Android, SIGID, permissions extraction, feature

extraction, artificial neural network, APK, intents.

1. Introduction

According to a research study conducted by a semantic

scholar, Google Play Store accounts for 67.2% of malicious app

installs. In another research, data of 7.9 million apps from 12

million smartphones have been collected for four months and

concluded that only 10.1% of malicious app installs are from

app stores other than Google Play Store.

Firstly, we have conducted an initial study, where we have

analyzed trends in the distribution of malware through apps and

the causes of the malware when it gains control over the system.

After analyzing all the trends, we have formulated that there are

numerous activities a hacker or a malware can do, and they are:

1) Extraction of information

The smartphone can be hacked, and personal data such as the

IMEI number and the user's information can be stolen.

2) Computerized phone calls and text messages

The cost of making calls and sending SMS to select premium

lines is increased.

3) Root exploits are a type of root exploit

The malware will obtain root access to the machine, control

it, and change the data.

4) Search Engine Optimizations

To raise the income of a search engine or the traffic on a

website, artificially search for a phrase and mimic clicks on

specific pages.

5) Dynamically downloaded code

It refers to an existing application that downloads malicious

code and deploys it on mobile devices.

6) Covert channel

A flaw in the gadgets makes it easier for information to

escape across operations that aren't supposed to exchange it.

7) Botnets

Command and Control servers are in control of a network of

compromised mobile devices with a Bot Master (C&C).

Deliver spam and launch DDoS attacks against the host devices.

By observing these trends, we have concluded that most

malware attacks are exhibited with the help of user permissions

to the application. So, to counter the malware attacks, there are

many paid and free tools available, but many of them detect

malware based on the application’s signature, which is

inefficient.

To counter the malware attacks on Android devices, we have

developed a website where users can obtain the APK version of

the application and upload it to the website. The backend

consists of a trained model which extracts the list of the required

permissions and the signature from the android manifest file of

the app.

2. Related Work

A literature survey is a comprehensive overview of prior

research on a particular subject. A literature review examines

scholarly articles, books, and other sources that are pertinent to

Android Malware Detection

Sayi Rosshhun Gadde1*, J. C. Pavan Kaushal2, T. Vijay Rao3, N. Srikanth4, Sayi Khushhal Gadde5

1,2,3,4Department of Computer Science and Engineering, Vallurupalli Nageswara Rao Vignana Jyothi Institute of

Engineering & Technology, Hyderabad, India
5Department of Computer Science and Engineering, CMR Technical Campus, Hyderabad, India

S. R. Gadde et al. International Journal of Research in Engineering, Science and Management, VOL. 5, NO. 1, JANUARY 2022 64

a specific field of research. It should provide a theoretical

foundation for the study and assist you (the author) in

determining the scope of your study.

[1] The SigPD technique is described in the publication.

Instead of gathering and evaluating all Android permissions, the

model uses data mining to determine the most important

permissions that can be classified. After that, SigPID uses

machine learning-based classification methods to classify the

data. Only 22 permissions are found to be significant in the

evaluation. SigPID is more effective, finding 93.62 percent of

malware and 91.4 percent of unknown malware samples in the

dataset.

[2] From API data, the model creates Boolean, frequency,

and time-series data sets. Three detection models for Android

malware detection, API calls, API frequency, and API sequence

aspects are built using these three data sets. Finally, an

ensemble model is constructed and tested using 10010 benign

and 10683 malicious applications. The model has an accuracy

of 98.98 percent.

[3] The study offers DL-Droid, a deep learning system that

uses dynamic analysis and stateful input generation to detect

fraudulent Android applications. According to the evaluation,

DL-Droid can achieve a detection rate of up to 97.8% (with

dynamic features only) and 99.6% (with dynamic Plus static

features), which is better than traditional machine learning

techniques.

[4] According to the article, the Random Forest classifier

outperforms the SVM classifier, which delivers roughly 94

percent accuracy with 97.24 percent accuracy, demonstrating

that it is a viable technique for Android malware detection.

[5] The model described in the paper was created by

combining four different machine learning algorithms,

including deep learning, farthest first clustering, Y-MLP,

nonlinear ensemble decision tree forest approach, and rough set

analysis as a feature subset selection algorithm, to detect

malware from real-world apps with an accuracy of 98.8%.

[6] In comparison to SVM and Naive Bayes, the research

claims that Random Forest has the highest accuracy. Random

Forest, SVM, and Naive Bayes classifiers are also commonly

employed.

[7] To propose an effective technique in Android malware

detection, the study suggests employing SVM for classification

and PCA for feature selection.

[8] MADAM monitors Android at both the kernel and user

levels at the same time to detect actual computer deformities

and discriminate between normal and malicious behaviour

using machine learning techniques. MADAM's prototype can

detect a variety of real-world viruses. Due to the limited number

of false positives created during the learning phase, MADAM

has no effect on the device's usage.

[9] Machine learning is used to detect harmful code. This

research combines a taxonomy based on statistically generated

criteria for identifying the acquisition techniques of new

harmful code into Mechanical Learning (ML) approaches. The

taxonomy is then used to categorise research on this topic and

to identify key open research concerns as a result of rising

dangers. File representation and selection methods,

classification algorithms, weighted ensembles, inequality,

practical learning, and chronological assessment are all

discussed in this article.

[10] On the Linux side of Android, the article discovered

roughly 105 helpful usable and linkable (ELF) formats. These

applications' calls are subjected to statistical analysis. The

analysis results can be compared to the recently installed

software to see whether there are any major differences.

Furthermore, certain work calls signal a potentially risky action.

As a result, we propose a simple decision tree for determining

the application's suspicion level. Our findings pave the way for

the first step in detecting fraudulent apps on Android

smartphones.

[11] Dynamic Examination runs the application in a sandbox,

which intervenes and records low-level system interactions for

further analysis. Both sandbox and diagnostic algorithms can be

placed on the cloud, allowing for easy access to and distribution

of suspicious software through a mobile app store such as

Google's Android Market. A Sandbox can also be used to

improve the performance of older antivirus software on the

Android operating system.

3. Existing Model

There are quite a few existing models available in the market,

but from what we have analyzed is that most of them are

subscription-based, and few of them are available for free; from

those available models, we have tested 200 apps and websites

that are available on play store and the internet and came to a

conclusion that most of the available malware detection

softwares are try to find the existence of malware in android OS

and in-an app by extracting a string, which is a package name,

this package names will be in the android manifest file of every

app. Then those extracted strings are compared with the

existing dangerous package names. Nevertheless, this method

is proven inefficient by many researchers.

4. Proposed System

Given an existing model, this proposed model is an attempt

to overcome the limitations of the existing model and provide

better results with the help of ANN.

Table 1

Key critical features of the proposed model

S. No. Features of the project

1. Fast and Precise detection of Malware in an application

2. Learns from the analyzed from app

3. Security and protection for side loading apps by users

4. Root level permission detection.

5. Metadata visibility.

There are different ways for implementing malware

detection in Android applications, but we choose static analysis.

Static analysis is a way of extracting the details from the

applications, including permissions, intent, uses-feature, API

calls, and application details.

There are two main modules in this project, the front end, and

the back end; the front end module is a visual representation

with a feature to upload an APK, and the results will be

S. R. Gadde et al. International Journal of Research in Engineering, Science and Management, VOL. 5, NO. 1, JANUARY 2022 65

displayed on the screen. The processing and extracting details

of the application (statistical analysis) happens in the back-end

module, where the model will analyze the uploaded APK.

From the uploaded APK, AndroGuard will extract MD5

Signature and other permissions with the help of AndroGuard.

AndroGuard is a Python-based tool that is used to disassemble

and decompile Android apps. It is conducive for the Static

Analysis of an application.

Choosing informative, discriminating, and independent

features is a critical stage in classification for improving

detection performance. So, we have chosen the top 20 used

permissions of 86798 malicious applications as a feature.

Fig. 1. Top 20 used permissions of 86798 malicious applications as a

feature

The extracted features are fed to the artificial neural network,

trained with a large set of malicious applications that will detect

whether the app file contains malware or not by simply

analyzing the extracted permissions and package name.

Fig. 2. Proposed system architecture

5. Implementation and Testing

With everything in hand and proper implementation of ANN,

we created an HTML page that facilitates a user to upload an

APK file and send a request for classification, and the above

functionality can be achieved through the ANN and the web

page which designed with the help of a templating language

called Jinja2 beside flask framework.

After Uploading the APK file, the features are extracted and

passed to the ANN classifier. The classifier responds with data

relevant to the app along with the classification, which is

demonstrated below. The output block of the HTML page

displays relevant information about the variety, namely the

Predicted class and Model accuracy.

Fig. 4. Metadata of the input apk

The metadata block of the HTML page displays relevant

information about the uploaded APK file, namely the App

name, Target SDK Version, and File size.

Fig. 5. Metadata of the input apk

Fig. 6. HTML page for a benign classification

Using the Classify function, we are attempting to determine

if the application downloaded is safe or not. The permissions

and metadata of the files are accessed in the classifier function.

Then the software predicts if it is safe or not to use with the help

of an artificial neural networks model.

Fig. 7. HTML page for a classification

This ANN model was trained using Keras, an open-source

software package including Dense, Dropout, Activation, and

Embedding features. A specific activation function is given to

the model using Dense, and a particular threshold value is

specified using Dropout. Then the model is allowed to fit and

predict the score.

S. R. Gadde et al. International Journal of Research in Engineering, Science and Management, VOL. 5, NO. 1, JANUARY 2022 66

Fig. 8. Flask code sample for classification

Fig. 9. Model for classification

6. Conclusion

In this paper, we build an Android malware detection system

based on ANN, which, unlike existing detection methods, can

detect unfamiliar Android applications using machine learning.

We extract several characteristics using the static method. Our

experimental results demonstrate that the novel method

outperforms established detection approaches such as signature

detection, with a greater detection rate and a lower error

detection rate. Android malware and detection methods are both

developing. As a result, we predict that comparable future

studies will be required to address these growing dangers and

detection technologies.

7. Future Scope

The proposed model is limited, and it is a web-based

application with which a user can only upload a single app and

check whether malware exists or not; this kind of behavior is

called static analysis.

This work can be further extended by adding a dynamic

analysis module with which a user can directly use the

developed ANN model live on the device, and the model will

have access to the metadata of every app present on the device,

and users need not have to provide an input apk. The model will

automatically determine whether an app is malicious or not by

analyzing the behavior of every application and identifying

which app consumes resources like battery, internet, and others

from their native operating system, i.e., Android OS. Currently,

the classifier works based on multilayer perceptron’s, but

according to a few research papers, genetic algorithms provide

better results when compared to the current model.

Aside from malware, if a developer makes a mistake, it

makes the lives of hackers simple to discover and exploit these

vulnerabilities. As a result, ML-based approaches for detecting

source code vulnerabilities may be built.

References

[1] Jin Li, Lichao Sun, Qiben Yan, Zhiqiang Li, Witawas Srisa-an, Heng Ye,

Significant Permission Identification for Machine-Learning-Based

Android Malware Detection.

[2] Zhuo Ma, Haoran Ge, Yang Liu, Meng Zhao, Jianfeng Ma, A

Combination Method for Android Malware Detection Based on Control

Flow Graphs and Machine Learning Algorithms

[3] Mohammed K.Al Zaylai A, Suleiman Y.Yerima, SakirSezerc, DL-Droid:

Deep learning-based android malware detection using real devices.

[4] Md. Shohel Rana, Sheikh Shah Mohammad Motiur Rahman, Andrew H.

Sung, Evaluation of Tree-Based Machine Learning Classifiers for

Android Malware Detection.

[5] Arvind Mahindru, A. L. Sangal, MLDroid—the framework for Android

malware detection using machine learning techniques.

[6] Prerna Agrawal, Bhushan Trivedi, Machine Learning Classifiers for

Android Malware Detection.

[7] Long Wena, Haiyang Yub, An Android malware detection system based

on machine learning.

[8] Reverse engineering using Androguard, International Journal of

Innovative Science and Research Technology.

[9] Dini, Gianluca, Martinelli, F. and Sgandurra, A Multi-Level Anomaly

Detector for Android Malware.

[10] Shabtai, A., Moskovitch, R., Elovici, Y. and Glezer, Detection of

malicious code by applying machine learning.

[11] Schmidt, A.D. Schmidt, H.G., Clausen, J., Yuksel, K.A., Kiraz, O.,

Camtepe, A. and Albayrak, Enhancing the security of Linux-based

Android devices.

[12] Blasing, T., Schmidt, A.D., Batyuk, L., Camtepe, S. A. and Albayrak, An

android application sandbox system for suspicious software detection.

