
International Journal of Research in Engineering, Science and Management

Volume 4, Issue 12, December 2021

https://www.ijresm.com | ISSN (Online): 2581-5792

*Corresponding author: agrawalatharva0777@gmail.com

16

Abstract: Question Answering (QA) system in facts retrieval is

a venture of mechanically answering an accurate answer to the

questions requested by way of human in natural language the use

of either a pre-structured database or a collection of natural

language documents. It gives simplest the asked statistics as

opposed to looking complete files like seek engine. As facts in

everyday lifestyles is growing, to be able to retrieve the precise

fragment of data even for a simple query calls for massive and

high-priced assets. This is the paper which describes the distinctive

technique and implementation information of question answering

machine for popular language and additionally proposes the

closed domain QA System for dealing with documents related to

education acts sections to retrieve more specific answers using

NLP strategies.

Keywords: NLP, QA system.

1. Introduction

Question answering is an essential NLP hassle and a long-

status synthetic intelligence milestone. QA structures permit a

person to specific a question in natural language and get a direct

and brief reaction. QA systems are now determined in search

engines like google and phone conversational interfaces, and

that they’re pretty top at answering easy snippets of statistics.

On extra difficult questions, but, these commonly handiest

cross as a long way as returning a list of snippets that we, the

customers, need to then browse via to locate the answer to our

query.

Reading comprehension is the capability to study a piece of

textual content and then solution questions about it. Reading

comprehension is tough for machines because it requires both

herbal language information and knowledge of the world.

A. Problem Description

Today the world is full of articles on a large variety of topics.

We aimed to build a question-answering product that can

understand the information in these articles and answer some

simple questions related to those articles.

B. Proposed Solution

We plan to use Natural Language Processing techniques to

extract the semantic & syntactic information from these articles

and use them to find the closest answer to the user’s question.

We’ll extract NLP features like POS tags, lemmas,

synonyms, hypernyms, meronyms, etc. for every sentence, and

use the Apache Solr server to store & index all this information.

We’ll extract the same features from the question and form a

Solr search query. This query will fetch the answer from the

indexed Solr objects.

The primary purpose for the use of Solr is that Solr helps

large-scale, disbursed indexing, seek, and aggregation/statistics

operations, allowing it to deal with programs large and small.

Last but no longer the least out of the container capacity to deal

with the synonyms or a few different kind of easier similarity

of that type out of the container.

Solr also helps actual-time updates and might manage

millions of writes in line with second. For instance, at

Lucene/Solr Revolution, Salesforce shared that they've over

500 billion complicated — now not just logs — documents in

Solr and are doing 7 billion updates consistent with day with a

sub 100-millisecond question latency. Based on some of other

talks at Revolution (Bloomberg, Microsoft,

Wal-Mart, et. Al.) in addition to knowledge of my

organization’s clients, Salesforce isn’t on my own in the ones

numbers.

Fig. 1. managed-schema.xml

2. Implementation Details

A. Minimum Hardware Requirements

 Processor: Intel i5 7th Gen

 RAM: 8 GB

 Hard Disk Space:15 GB

B. Programming Tools

 Python (version: 3.8.6) – terminal

 Apache Solr (version: 8.6.3)

 NLTK library (version: 3.5)

 Spacy library (version: 2.3.2)

Question Answering System Using Natural

Language Processing

Atharva Mangeshkumar Agrawal1*, Akhil Atri2, Ayanesh Chowdhury3, Rajeev Koneru4,

Kedareswara Abhinav Batchu5, Sai Charan Reddy Mallavaram6

A. M. Agrawal et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 12, DECEMBER 2021 17

 en_core_web_sm & json &glob

 pysolr (3.9.0) (It is a lightweight Python client for Apache

Solr.

Fig. 2. Architecture

C. Architecture

We divided the venture into following 7 steps:

Step 1:

 Read all of the sentences from the given corpus.

 Extract the following NLP functions from every

sentence – word tokens, lemmas, stems, synonyms,

hypernyms, hyponyms, holonyms, meronyms,

named entities, dependency parsed tree.

 We used Spacey library to create a dependency

parsed tree of the sentence & saved it in a list.

Step 2:

 Send the sentence & it’s extracted capabilities to

Apache Solr for indexing.

 Each listed object is a listing of key price pairs

wherein every secret is an NLP characteristic (ex.

Synonyms, hypernyms, and so on.) & its fee is

stored in csv layout.

 Solr has an inner synonyms.Txt report which

accepts csv values of words that aren't

commonplace & precise to our area.

 Solr considers those values as synonyms when

indexing and querying. Ex.: UTD, The University

of Texas at Dallas, UT Dallas.

 This may be done via making a configuration

alternate inside the managed-schema document in

Solr’s listing as proven in determine 1.

 At the stop of this step, the entire corpus would be

indexed and saved in Solr, geared up to handle the

queries given to it in a proper format after which

answering them.

Step 3:

 The software calls for questions to be saved in a .Txt

file & it’s route should be handed as a parameter at

the same time as running the program.

 The questions can be of 3 types: Who, When and

Where.

 The form of query is used to determine the named-

entity sort of solution required NER (Named Entity

Recognition).

Question Type Required NER type of Answer

Who PERSON / ORG

When TIME / DATE

Where LOC / GPE

Step 4:

 Solr accepts question in key-value layout and it

additionally helps logical operators like AND, OR.

 We create a concatenated question of the extracted

NLP functions from the question.

 The cause behind this step is simple - to create a

question that allows you to have a more match score

with the specified sentence in Solr Index.

 By using NLP features we growth the possibilities

of matching in instances wherein the precise phrase

within the question doesn’t arise within the sentence

stored in Solr.

Ex: If the query has a token: ‘founded’ but it’s

answer sentence has a token: ‘installed’, the query

would nevertheless be capable of suit them as they

might be gift in the synonyms listing.

 Some capabilities are extra in all likelihood to give

better matches and they may be given desire over

others by means of adding boosting weights to

them.

 A sample question is proven in parent 2:

Fig. 3. Sample query

Step 5:

 A connection is opened to Solr and the query is

parsed which returns a list of Solr items.

 These Solr gadgets include the pleasant possible

matches that Solr located for the given question.

 They are organized in the descending order of the

suit score which Solr handles internally.

 Every object contains the identical capabilities that

have been indexed in Step 2. This allows us to

extract any records approximately those sentences

without processing them similarly, as a

consequence saving computational time and

A. M. Agrawal et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 12, DECEMBER 2021 18

resources.

Step 6:

 Top five consequences for every seek question are

taken to extract the answer.

 Best viable sentence is chosen from them using the

Dependency Parsed tree gift in the Solr item of the

sentence.

 The required answer is extracted from the sentence

the usage of the dependency parsed tree tags &

NERs. Ex: for WHEN questions, tokens with DATE

or TIME tags are selected

Step 7:

 The extracted results from Step 6 are stored in a

JSON format as follows:

{

"Question": "question string", "answers”:{

//answers to question here

},

"sentences”:{

//supporting sentences containing answers to question here

},

"documents”:{

//supporting Wikipedia documents containing answers to

question here

}

}

 One JSON object is created for every question.

They are saved in a JSON array & dumped into

‘answers.json’ file.

 Figure 4 shows a screenshot of answers.json

In the making of the NLP Features.py module.which is the

step 2 and the step 3

 Tokenization of words

 POS (part of speech) tagging

 Extracting Synonyms, Hypernyms, Hyponyms,

Holonyms and Meronyms as a list for further

indexing.

 Returning NER (named entity recognition) to the

main.py module Also contributed in making a

function to write /append data to the JSON file.

 Entities that are in the answer.json file are the

question , its answer , the sentence from which the

answer is extracted and the document it refered to

extract the answer

Problems encountered(standard):

 The phrases utd, The Univ of Texas at Dallas, The UT

Dallas are used interchangeably within the questions

or corpus. We resolved it by means of making those

phrases synonyms inside the synonyms.Txt file. Also

some of the extra synonyms that we may want to

discover that would be useful.

 Getting the required sentences in pinnacle 5

Fig. 4. answers.json

A. M. Agrawal et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 12, DECEMBER 2021 19

consequences in Solr turned into challenging. We

resolved it by the use of the boosted weights for few

features (entities, word_tokens and required_entities)

3. Conclusion

How these troubles had been resolved:

 First we tried to research all the simple concepts and

them implemented it.

 The documentation of NLTK turned into of lots

assist.

 Geeks for geeks

 mistakes related to code have been resolved via

mutual discussions, stackover waft, github,

youtube.

References

[1] https://en.wikipedia.org/wiki/Question_answering#:~:text=Question%20

answering%20(QA)%20is%20a,humans%20in%20a%20natural%20lang

uage.

