journals.resaim.com/ijresm | ISSN (Online): 2581-5792 | RESAIM Publishers

On Cosymplectic Manifold with H-Conformal Curvature \bar{C}

Savita Verma^{*}

Associate Professor, Department of Mathematics, Pt. L. M. S. Govt. P.G. College, Rishikesh, India *Corresponding author: savitaverma19sep@gmail.com

Abstract: Tokagi, H and Watanabe [1] Yano, Y. [2], Mishra, R.S. [3], Pandey [4] etc., have studied H-Conformal Curvature tensor \overline{C} , The studies of Cosymplectic manifold with orthogonal basis equipped with different structure have been made by Yano [2], Tokagi [1] and Mishra[3].

Here we have discussed Cosymplectic manifold M_n (n=2m+1) possessing the orthonormal basis {e_i, Fe_i}, i=1, 2, 3-----2m of unit vector which are normal to the contact vector T, we have obtained the expression relating the sectional curvature and scalar curvature in H-Conformal \overline{C} curvature tensor.

Keywords: Almost contact metric (almost Gravan) manifold, Cosymplectic manifold, H-Conformal Curvature Orthonormal basis, Sectional curvature.

1. Introduction

Let M_n , n = 2m+1 be an almost contact metric (almost Grayan) manifold equipped with an almost contact metric structure,

{F, T, A, g} satisfying:

(1.1) (a) $F^2 X = -X + A(X) T$

A(FT) = 0(1.1) (b)

(1.1)(c)FT = 0

A(T) = 0(1.1)(d)

 $g(\overline{X}, \overline{Y}) = g(X,Y) - A(X)A(Y)$ (1.2)(a)

g(T, X) = A(X)(1.2)(b)

 $F(X, Y) \stackrel{\text{def}}{=} g(\overline{X}, Y) = -g(X, \overline{Y}) = -F(Y, X)$ (1.2)(c)

Where

(1.2)(d) $\bar{X} \stackrel{\text{def}}{=} FX$.

For all C^{∞} vector fields X, Y in M_n , here F is a structure tensor of type (1, 1), A is a 1- form, T is a contravariant vector field associated with A, g is a fundamental metric tensor and 'F is a fundamental 2- form.

Let D be a Levi - cevita or Riemannian curvature tensor in M_n . If in M_n , the structure tensor F and the contact form A are covariantly constant i.e.

(1.3) $(D_x F)(Y) = 0$

 $(1.4)(a) (D_xA)(Y) = 0$

(1.4)(b) $D_xT = 0$

Then M_n is called a Cosymplectic Manifold [2] and [3].

1.40. Ortho-normal basis in M_n :

Let a point $X \in M_n$ {e₁, e₂, e₃,.....e_{2m}, Fe₁, Fe₂...... Fe_{2m} }, be an orthonormal basis of the tangent space Tx (M_n), such that

(1.40)(a) K (e_i) =
$$\lambda_i e_i + \mu T$$

K (Fe_i) = $\lambda_i Fe_i$, for $i = 1, 2, 3, \dots 2m$.

Where T is such that

(1.40)(b) $g(e_i, T) = 0,$

i.e. T is orthogonal to e_i , for i = 1,2,3.....2m. The result in (1.40) are analogous to those in [1].

Since in cosymplectic manifold M_n (1.3) implies

 $(1.41)(a) K(X, Y, \bar{Z}) = \overline{K}(X, Y, Z)$

 $(1.41)(b) \operatorname{Ric}(Y, \bar{Z}) = \operatorname{Ric}(\bar{Y}, Z) = - g(K(\bar{Y}), Z)$ and

$$(1.41)(c) \quad K(\overline{Y}) = K(\overline{Y})$$

We know that sectional curvature k* of M_n in the plane of the unit vector X and Y at any point $p \in M_n$ is defined by [3].

$$(1.42) k^* = (K(X,Y,X,Y))/(g(X,X)g(Y,Y)-\{g(X,Y)\}^2)$$

So the sectional curvature of M_n in the plane of e_i , e_i , is given

(1.43)
$$k^* = K(e_i, e_i, e_i, e_i)$$

Since $g(e_i, e_i) = 0$, and $g(e_i, e_i) = 1$, as the e_i , e_i are mutually perpendicular.

Now H-conformal \tilde{C} curvature tensor is given by [1], [2], [3] $(2.00)\ \widetilde{\textit{C}}(X,Y,Z,W) {\stackrel{\scriptscriptstyle def}{=}}\ g(\widetilde{\textit{C}}(X,Y,Z),W)$

= 'K(X,Y,Z,W) - $\frac{1}{(n+4)}$ {Ric(Y,Z)g(X,W) - Ric(X,Z)g(Y,W)

+ Ric(\overline{Y} ,Z)'F(X,W) - Ric(\overline{X} ,Z)'F(Y,W) + 'F(Y,Z)Ric(\overline{X} ,W)

-' $F(X,Z)Ric(\bar{Y},W)+g(Y,Z)Ric(X,W)-g(X,Z)Ric(Y,W)$

- $2\operatorname{Ric}(\bar{X}, Y)^{\prime}F(Z, W)$ - $2^{\prime}F(X, Y)\operatorname{Ric}(\bar{Z}, W)$

 $+ \frac{k}{(n+2)(n+4)} [g(Y,Z)g(X,W) - g(X,Z)g(Y,W) + {}^{\backprime}F(Y,Z){}^{\backprime}F(X,W)$

- 'F(X,Z)'F(Y,W) - 2'F(X,Y)'F(Z,W)]

Further, from equation (2.00) H-conformal \tilde{C} curvature tensor is given as,

(2.01) $\widetilde{C}(X,Y,Z) = K(X,Y,Z) - \frac{1}{(n+4)} [Ric(Y,Z)X - Ric(X,Z)Y]$ $+\text{Ric}(\bar{Y},Z)\bar{X}-\text{Ric}(\bar{X},Z)\bar{Y}+\text{K}(\bar{X})g(\bar{Y},Z)-\text{K}(Y)g(X,Z)+$

International Journal of Research in Engineering, Science and Management Volume-3, Issue-7, July-2020

journals.resaim.com/ijresm | ISSN (Online): 2581-5792 | RESAIM Publishers

$$\begin{split} &K(X)g(Y,\!Z) - K(\bar{Y})g(\bar{X},\!Z) - 2\text{Ric}(\bar{X},\!Y)\bar{Z} - 2K(\bar{Z})g(\bar{X},\!Y)] \\ &+ \frac{k}{(n+2)(n+4)}[g(Y,\!Z)X - g(X,\!Z)Y + g(\bar{Y},\!Z)\bar{X} - g(\bar{X},\!Z)\bar{Y}) - 2g(\bar{X},\!Y)\bar{Z}] \end{split}$$

For Z=T, (2.01) becomes,

(2.02)
$$\widetilde{C}(X,Y,T) = K(X,Y,T) - \frac{1}{(n+4)} [Ric(Y,T)X - Ric(X,T)Y - K(Y)A(X) + K(X)A(Y)] + \frac{k}{(n+2)(n+4)} [A(Y)X - A(X)Y]$$

Now, putting $X = e_i$, $Y = e_i$ in above equation, we get

(2.03)
$$\widetilde{C}(e_i, e_j, T) = K(e_i, e_j, T) - \frac{\mu}{(n+4)} [e_i - e_j]$$

Also from (2.02), we get

(2.04)
$$\widetilde{C}(\overline{X},\overline{Y},T) = K(\overline{X},\overline{Y},T)$$

Again putting $X = e_i$, $Y = e_i$ in (2.04), we get

(2.05)
$$\widetilde{C}(Fe_i, Fe_j, T) = K(Fe_i, Fe_j, T)$$

Further from (2.03), we obtained

(2.06)
$$\widetilde{C}(e_i, e_j, e_k, T) = {}^{\iota}K(e_i, e_j, e_k, T)$$

Since
$$g(e_i, e_k) = 0 = g(e_i, e_k)$$
, $i \neq j \neq k$

Thus, we have,

 $\label{eq:theorem} \begin{array}{ll} \textit{Theorem}(2.10) \hbox{:} \ \ Let \ M_n \ be \ a \ cosymplectic \ manifold \ .if \ \{ \ e_i \ , Fe_j \ \}, \ i=1,2,3.......2m; \ be \ an \ orthonormal \ basis \ normal \ to \ T \ in \ M_n \ , \ then \ H-Conformal \ curvature \ tensor \ \widetilde{\textit{C}} \ \ equals \ the \ Riemann-Curvature \ tensor \ in \ M_n. \end{array}$

Proof: The proof of the theorem follows immediately from the equation (2.05) and (2.06).

Corollary (2.11): Let M_n be a cosymplectic manifold admitting an orthonormal basis $\{e_i, Fe_j\}$, i=1,2,3.....2m; normal to T. Then H-Conformal curvature tensor $\widetilde{\mathcal{C}}$ vanishes. if M_n is flat with respect to this basis.

The proof of the corollary is obvious from the above theorem. Now, (2.01) gives for $X=e_i$, $Y=e_j$

$$\begin{split} &(2.07)\ \ \widetilde{C}(e_i\,,e_j\,,Z) = K(e_i\,,e_j,\,Z) - \frac{1}{(n+4)}[g(e_j\,,Z)\{\lambda_je_i\,+e_i\lambda_i\,+\mu T\} \\ &- g(e_i,\,Z)\{\,\lambda_ie_j\,+e_j\lambda_j\,+\mu T\,\,\} + g(Fe_j,Z)\{\,\lambda_i\,Fe_i\,+\lambda_i\,Fe_i\} - g(Fe_i,Z)\{\,\lambda_i\,Fe_j\,+\lambda_j\,Fe_j\,\,\} - 2g(Fe_i\,,e_j)\{\,\lambda_i\,\bar{Z}\,+K(\bar{Z})\}] + \frac{k}{(n+2)(n+4)}[g(e_j\,,Z)e_i\,-g(e_i\,,Z)e_i\,+g(Fe_j\,,Z)Fe_i-g(Fe_i\,,Z)Fe_i\,-2g(Fe_i\,,e_j)\bar{Z}] \end{split}$$

Further putting Z=
$$e_k$$
 in the above equation, we get (2.08) $\widetilde{C}(e_i,e_j,e_k) = K(e_i,e_j,e_k) - \frac{1}{(n+4)} [g(Fe_j,e_k)\{\lambda_j Fe_i + \lambda_i Fe_i\} - g(Fe_i,e_k)\{\lambda_i Fe_j + \lambda_j Fe_i\} - 2g(Fe_i,e_i)\{\lambda_i Fe_k + \lambda_k Fe_k\}]$

$$+\frac{\mathit{k}}{(\mathit{n}+2)(\mathit{n}+4)}[g(Fe_j\,,\,e_k)Fe_i\,-\,g(Fe_i\,,\,e_k)Fe_j\,\,-2g(Fe_i\,,e_j)Fe_k]$$

Contracting above equation with respect to e_i , we get (2.09) $C_1^1 \ \widetilde{C}(e_i, e_j, e_k) = C^*(e_j, e_k) = 0$, $\forall e_j, e_k$ So, we have,

Theorem (2.11): In a Cosymplectic manifold M_n admitting an orthonormal basis normal to the contact vector T, we have

$$C_1^1 \ \widetilde{C}(e_i, e_j, e_k) = C^*(e_j, e_k) = 0, \ \forall e_j, e_k$$

Proof: The proof of the theorem immediately follows from the equation (2.09),

Again taking
$$Z = e_j$$
 in (2.07), we get
(2.10) $\widetilde{C}(e_i, e_j, e_j) = K(e_i, e_j, e_j) - \frac{1}{(n+4)} [\lambda_j e_i + e_i \lambda_i + \mu T]$
 $-3g(Fe_i, e_j) \{ \lambda_i Fe_j + \lambda_j Fe_j \}] + \frac{k}{(n+2)(n+4)} [e_i - 3g(Fe_i, e_j) Fe_j]$
Or
(2.11)(a) ' $\widetilde{C}(e_i, e_j, e_j, e_i) =$ ' $K(e_i, e_j, e_j, e_i) - \frac{1}{(n+4)} [(\lambda_i + \lambda_j) + 3g(Fe_i, e_j)^2 (\lambda_i + \lambda_j)] + \frac{k}{(n+2)(n+4)} [1 - 3g(Fe_i, e_j)^2]$
Or
(2.11)(b) ' $\widetilde{C}(e_i, e_j, e_j, e_i) =$ ' $K(e_i, e_j, e_j, e_i) + \frac{1}{(n+4)} [(\lambda_i + \lambda_j) + 3(\lambda_i + \lambda_j)g(Fe_i, e_j)^2] + \frac{k}{(n+2)(n+4)} [1 - 3g(Fe_i, e_j)^2]$

And by using (1.42), (1.43); (2.11)(b) can be rewritten as,

$$\begin{split} &(2.12)\ \ \ \widetilde{\textit{C}}(e_i\,,\!e_j\,,\!e_j,\!e_i\,) = k^* + \frac{1}{(n\!+\!4)} [(\lambda_i + \lambda_j) + \! 3(\ \lambda_i + \lambda_j) g(Fe_i\ ,\\ &e_j)^2] - \frac{\textit{k}}{(n\!+\!2)(n\!+\!4)} [1 - 3g(Fe_i\,,\,e_j)^2] \end{split}$$

Theorem (2.12): In a Cosymplectic manifold M_n , admitting an orthonormal basis, given above, the sectional curvature k^* of M_n in the plane of unit vectors (e_i,e_j) is given as,

(2.13)
$$k^* + \frac{1}{(n+4)} [(\lambda_i + \lambda_j) + 3(\lambda_i + \lambda_j) g(Fe_i, e_j)^2] - \frac{k}{(n+2)(n+4)} [1 3g(Fe_i, e_j)^2] = 0$$

Provided that H- Conformal curvature tensor vanishes in M_n . *Proof:* In the equation (2.12) , if $\widetilde{\mathcal{C}}=0$, then (2.12) immediately follows.

Corollary (2.12): In a Cosymplectic manifold M_n , with the orthonormal basis, under consideration and with vanishing H- Conformal curvature tensor, the sectional curvature k^{\ast} is given as

(2.14)(a)
$$k^* = -\frac{2(\lambda i + \lambda j)}{(n+4)} - \frac{2k}{(n+2)(n+4)}$$

Provided that Fe_i is parallel to e_j
(2.14)(b) $k^* = -\frac{(\lambda i + \lambda j)}{(n+4)} - \frac{k}{(n+2)(n+4)}$

Provided that Fei is perpendicular to ei

The proof of the above corollary follows immediately from above conditions and equation (2.13).

International Journal of Research in Engineering, Science and Management Volume-3, Issue-7, July-2020

journals.resaim.com/ijresm | ISSN (Online): 2581-5792 | RESAIM Publishers

2. Conclusion

- 1. If { e_i , Fe_j }, $i=1,2,3,\ldots,2m$; be an orthonormal basis normal to T in M_n , and if M_n be a cosymplectic manifold then H-Conformal curvature tensor $\widetilde{\mathcal{C}}$ equals the Riemann-Curvature tensor in M_n .
- 2. Let M_n be a cosymplectic manifold admitting an orthonormal basis $\{e_i\,,Fe_j\,\}$, i=1,2,3.....2m; normal to T. Then H-Conformal curvature tensor $\widetilde{\textit{C}}$ vanishes. if M_n is flat with respect to this basis.
- 3. In a Cosymplectic manifold M_n admitting an orthonormal basis normal to the contact vector T, we have C_1^1 $\widetilde{C}(e_i, e_j, e_k) = C^*(e_j, e_k) = 0$, $\forall e_j, e_k$
- 4. In a Cosymplectic manifold M_n , admitting an orthonormal basis, given above, the sectional curvature k^* of M_n in the plane of unit vectors (e_i,e_j) is given as,

$$k^* + \frac{1}{(n+4)}[(\lambda_i + \lambda_j) + 3(\lambda_i + \lambda_j)g(Fe_i, e_j)^2] - \frac{k}{(n+2)(n+4)}[1 - k^*]$$

$$3g(Fe_i, e_j)^2$$
] = 0

Provided that H- Conformal curvature tensor vanishes in M_n.

 In a Cosymplectic manifold M_n, with the orthonormal basis, under consideration and with vanishing H – Conformal curvature tensor, the sectional curvature k* is given as

$$k^* = -\frac{2(\lambda i + \lambda j)}{(n+4)} - \frac{2k}{(n+2)(n+4)}, \text{ Provided that Fe}_i \text{ is parallel to e}_j.$$

$$k^* = -\frac{(\lambda i + \lambda j)}{(n+4)} - \frac{k}{(n+2)(n+4)}$$
, Provided that Fe_i is perpendicular to e_j .

References

- [1] Tokagi, H and Watanabe, Y, Kählerian manifold with vanishing Bochnew curvature tensor satisfying $R(X.Y).R_1=0$ Harkaido math. Soc. Vol. 7(2), pp. 119-122.
- [2] Yano K, On contact conformal connection; Kodia Math. Rep., 28(1976), pp. 90-103.
- [3] Mishra R. S., Structures on differentiable manifold and their applications, Chandrama Prakashan, Allahabad India (1984).
- [4] Pandey S. N., Some contributions to differential geometry of differentiable manifolds, Thesis (1979), B.H.U. Varanasi (India).