On Cosymplectic Manifold with H-Conformal Curvature \bar{C}

Savita Verma*
Associate Professor, Department of Mathematics, Pt. L. M. S. Govt. P.G. College, Rishikesh, India
*Corresponding author: savitaverma19sep@gmail.com

Abstract

Tokagi, H and Watanabe [1] Yano, Y. [2], Mishra, R.S. [3], Pandey [4] etc., have studied H-Conformal Curvature tensor \bar{C}, The studies of Cosymplectic manifold with orthogonal basis equipped with different structure have been made by Yano [2], Tokagi [1] and Mishra[3].

Here we have discussed Cosymplectic manifold $M_{n}(n=2 m+1)$ possessing the orthonormal basis $\left\{\mathrm{e}_{\mathrm{i}}, \mathrm{Fe}_{\mathrm{i}}\right\}, \mathrm{i}=1,2,3-\cdots--------2 \mathrm{~m}$ of unit vector which are normal to the contact vector T, we have obtained the expression relating the sectional curvature and scalar curvature in \mathbf{H}-Conformal \bar{C} curvature tensor.

Keywords: Almost contact metric (almost Grayan) manifold, Cosymplectic manifold, H-Conformal Curvature tensor, Orthonormal basis, Sectional curvature.

1. Introduction

Let $\mathrm{M}_{\mathrm{n}}, \mathrm{n}=2 \mathrm{~m}+1$ be an almost contact metric (almost Grayan) manifold equipped with an almost contact metric structure,
\{F, T, A, g\} satisfying:

(1.1) (a) $\mathrm{F}^{2} \mathrm{X}=-\mathrm{X}+\mathrm{A}(\mathrm{X}) \mathrm{T}$
(1.1) (b) $\mathrm{A}(\mathrm{FT})=0$
(1.1)(c) $\mathrm{FT}=0$
(1.1)(d) $\mathrm{A}(\mathrm{T})=0$
(1.2)(a) $\mathrm{g}(\bar{X}, \bar{Y})=\mathrm{g}(\mathrm{X}, \mathrm{Y})-\mathrm{A}(\mathrm{X}) \mathrm{A}(\mathrm{Y})$
(1.2)(b) $\mathrm{g}(\mathrm{T}, \mathrm{X})=\mathrm{A}(\mathrm{X})$
(1.2)(c) $\quad \mathrm{F}(\mathrm{X}, \mathrm{Y}) \stackrel{\text { def }}{=} \mathrm{g}(\bar{X}, \mathrm{Y})=-\mathrm{g}(\mathrm{X}, \bar{Y})=-\mathrm{C}(\mathrm{Y}, \mathrm{X})$

Where

$$
(1.2)(\mathrm{d}) \quad \bar{X} \stackrel{\text { def }}{=} \mathrm{FX},
$$

For all C^{∞} vector fields X, Y in M_{n}, here F is a structure tensor of type (1,1), A is a 1 - form, T is a contravariant vector field associated with A, g is a fundamental metric tensor and ' F is a fundamental 2-form.

Let D be a Levi - cevita or Riemannian curvature tensor in M_{n}. If in M_{n}, the structure tensor F and the contact form A are covariantly constant i.e.

```
(1.3) }\quad(\mp@subsup{D}{x}{}F)(Y)=
(1.4)(a) (D}\mp@subsup{\textrm{D}}{\textrm{x}}{\textrm{A}})(\textrm{Y})=
(1.4)(b) }\mp@subsup{\textrm{D}}{\textrm{x}}{}\textrm{T}=
```

Then \mathbf{M}_{n} is called a Cosymplectic Manifold [2] and [3].

1.40. Ortho-normal basis in M_{n} :

Let a point $X \in M_{n}\left\{e_{1}, e_{2}, e_{3}\right.$, \qquad $. \mathrm{e}_{2 \mathrm{~m}}, \mathrm{Fe}_{1}, \mathrm{Fe}_{2}$. \qquad $\left.\mathrm{Fe}_{2 \mathrm{~m}}\right\}$, be an orthonormal basis of the tangent space $\mathrm{Tx}\left(\mathrm{M}_{\mathrm{n}}\right)$, such that

$$
\text { (1.40)(a) } \begin{aligned}
& \mathrm{K}\left(\mathrm{e}_{\mathrm{i}}\right)=\lambda_{\mathrm{i}} \mathrm{e}_{\mathrm{i}}+\mu \mathrm{T} \\
& \mathrm{~K}\left(\mathrm{Fe}_{\mathrm{i}}\right)=\lambda_{\mathrm{i}} \mathrm{Fe}_{\mathrm{i}}, \text { for } \mathrm{i}=1,2,3, \ldots \ldots \ldots .2 \mathrm{~m} .
\end{aligned}
$$

Where T is such that
(1.40)(b) $g\left(e_{i}, T\right)=0$,
i.e. T is orthogonal to e_{i}, for $\mathrm{i}=1,2,3 \ldots \ldots .2 \mathrm{~m}$. The result in (1.40) are analogous to those in [1].

Since in cosymplectic manifold M_{n} (1.3) implies
(1.41)(a) K $(\mathrm{X}, \mathrm{Y}, \bar{Z})=\bar{K}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$
(1.41)(b) $\operatorname{Ric}(\mathrm{Y}, \bar{Z})=\operatorname{Ric}(\bar{Y}, \mathrm{Z})=-\mathrm{g}(\mathrm{K}(\bar{Y}), \mathrm{Z})$
and
(1.41)(c) $\mathrm{K}(\bar{Y})=\mathrm{K}(\bar{Y})$

We know that sectional curvature k^{*} of M_{n} in the plane of the unit vector X and Y at any point $\mathrm{p} \in \mathrm{M}_{\mathrm{n}}$ is defined by [3].
(1.42) $\mathrm{k}^{*}=(\mathrm{K}(\mathrm{X}, \mathrm{Y}, \mathrm{X}, \mathrm{Y})) /\left(\mathrm{g}(\mathrm{X}, \mathrm{X}) \mathrm{g}(\mathrm{Y}, \mathrm{Y})-\{\mathrm{g}(\mathrm{X}, \mathrm{Y})\}^{2}\right)$

So the sectional curvature of M_{n} in the plane of e_{i}, e_{j}, is given by,
(1.43) $\mathrm{k}^{*}=' \mathrm{~K}\left(\mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{i}}\right)$

Since $g\left(e_{j}, e_{i}\right)=0$, and $g\left(e_{i}, e_{i}\right)=1$, as the e_{i}, e_{j} are mutually perpendicular.

Now H-conformal \tilde{C} curvature tensor is given by[1],[2],[3]
(2.00) $\widetilde{C}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W}) \stackrel{\text { def }}{=} \mathrm{g}(\tilde{C}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}), \mathrm{W})$
$=' K(X, Y, Z, W)-\frac{1}{(n+4)}\{\operatorname{Ric}(Y, Z) g(X, W)-\operatorname{Ric}(X, Z) g(Y, W)$
$+\operatorname{Ric}(\bar{Y}, \mathrm{Z}){ }^{\prime} \mathrm{F}(\mathrm{X}, \mathrm{W})-\operatorname{Ric}(\bar{X}, \mathrm{Z})^{\prime} \mathrm{F}(\mathrm{Y}, \mathrm{W})+{ }^{\prime} \mathrm{F}(\mathrm{Y}, \mathrm{Z}) \operatorname{Ric}(\bar{X}, \mathrm{~W})$
$-‘ F(X, Z) \operatorname{Ric}(\bar{Y}, W)+g(Y, Z) \operatorname{Ric}(X, W)-g(X, Z) \operatorname{Ric}(Y, W)$
$\left.-2 \operatorname{Ric}(\bar{X}, Y){ }^{\prime} F(Z, W)-{ }^{\prime} F(X, Y) \operatorname{Ric}(\bar{Z}, W)\right\}$
$+\frac{k}{(n+2)(n+4)}\left[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)+{ }^{\prime} F(Y, Z)^{\prime} F(X, W)\right.$
$\left.-{ }^{‘} \mathrm{~F}(\mathrm{X}, \mathrm{Z}){ }^{\prime} \mathrm{F}(\mathrm{Y}, \mathrm{W})-\mathbf{2}^{\text {'F }} \mathrm{F}(\mathrm{X}, \mathrm{Y})^{\prime} \mathrm{F}(\mathrm{Z}, \mathrm{W})\right]$
Further, from equation (2.00) H-conformal \tilde{C} curvature tensor is given as,
(2.01) $\widetilde{C}(X, Y, Z)=K(X, Y, Z)-\frac{1}{(n+4)}[\operatorname{Ric}(Y, Z) X-\operatorname{Ric}(X, Z) Y$ $+\operatorname{Ric}(\bar{Y}, \mathrm{Z}) \bar{X}-\operatorname{Ric}(\bar{X}, \mathrm{Z}) \bar{Y}+\mathrm{K}(\bar{X}) \mathrm{g}(\bar{Y}, \mathrm{Z})-\mathrm{K}(\mathrm{Y}) \mathrm{g}(\mathrm{X}, \mathrm{Z})+$
$\mathrm{K}(\mathrm{X}) \mathrm{g}(\mathrm{Y}, \mathrm{Z})-\mathrm{K}(\bar{Y}) \mathrm{g}(\bar{X}, \mathrm{Z})-2 \operatorname{Ric}(\bar{X}, \mathrm{Y}) \bar{Z}-2 \mathrm{~K}(\bar{Z}) \mathrm{g}(\bar{X}, \mathrm{Y})]$
$\left.+\frac{k}{(n+2)(n+4)}[\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}+\mathrm{g}(\bar{Y}, \mathrm{Z}) \bar{X}-\mathrm{g}(\bar{X}, \mathrm{Z}) \bar{Y})-2 \mathrm{~g}(\bar{X}, \mathrm{Y}) \bar{Z}\right]$
For $\mathrm{Z}=\mathrm{T}$, (2.01) becomes,
(2.02) $\widetilde{C}(\mathrm{X}, \mathrm{Y}, \mathrm{T})=\mathrm{K}(\mathrm{X}, \mathrm{Y}, \mathrm{T})-\frac{1}{(n+4)}[\operatorname{Ric}(\mathrm{Y}, \mathrm{T}) \mathrm{X}-\operatorname{Ric}(\mathrm{X}, \mathrm{T}) \mathrm{Y}$
$-\mathrm{K}(\mathrm{Y}) \mathrm{A}(\mathrm{X})+\mathrm{K}(\mathrm{X}) \mathrm{A}(\mathrm{Y})]+\frac{k}{(n+2)(n+4)}[\mathrm{A}(\mathrm{Y}) \mathrm{X}-\mathrm{A}(\mathrm{X}) \mathrm{Y}]$
Now, putting $\mathrm{X}=\mathrm{e}_{\mathrm{i}}, \mathrm{Y}=\mathrm{e}_{\mathrm{j}}$ in above equation, we get
(2.03) $\widetilde{C}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}, \mathrm{T}\right)=\mathrm{K}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}, \mathrm{T}\right)-\frac{\mu}{(n+4)}\left[\mathrm{e}_{\mathrm{i}}-\mathrm{e}_{\mathrm{j}}\right]$

Also from (2.02), we get
(2.04) $\widetilde{C}(\bar{X}, \bar{Y}, \mathrm{~T})=\mathrm{K}(\bar{X}, \bar{Y}, \mathrm{~T})$

Again putting $X=e_{i}, Y=e_{j}$ in (2.04), we get
(2.05) $\widetilde{C}\left(\mathrm{Fe}_{\mathrm{i}}, \mathrm{Fe}_{\mathrm{j}}, \mathrm{T}\right)=\mathrm{K}\left(\mathrm{Fe}_{\mathrm{i}}, \mathrm{Fe}_{\mathrm{j}}, \mathrm{T}\right)$

Further from (2.03), we obtained
(2.06) $\widetilde{C}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{k}}, \mathrm{T}\right)={ }^{\prime} \mathrm{K}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{k}}, \mathrm{T}\right)$

Since $g\left(e_{i}, e_{k}\right)=0=g\left(e_{j}, e_{k}\right), \quad i \neq j \neq k$
Thus, we have,

Theorem(2.10): Let M_{n} be a cosymplectic manifold .if $\left\{\mathrm{e}_{\mathrm{i}}\right.$, $\left.\mathrm{Fe}_{\mathrm{j}}\right\}, \mathrm{i}=1,2,3 \ldots \ldots \ldots . .2 \mathrm{~m}$; be an orthonormal basis normal to T in M_{n}, then H -Conformal curvature tensor $\widetilde{\mathrm{C}}$ equals the Riemann-Curvature tensor in M_{n}.

Proof: The proof of the theorem follows immediately from the equation (2.05) and (2.06).

Corollary (2.11): Let M_{n} be a cosymplectic manifold admitting an orthonormal basis $\left\{\mathrm{e}_{\mathrm{i}}, \mathrm{Fe}_{\mathrm{j}}\right\}, \mathrm{i}=1,2,3 \ldots \ldots \ldots . .2 \mathrm{~m}$; normal to T . Then H -Conformal curvature tensor $\widetilde{\mathrm{C}}$ vanishes. if M_{n} is flat with respect to this basis.

The proof of the corollary is obvious from the above theorem.
Now, (2.01) gives for $\mathrm{X}=\mathrm{e}_{\mathrm{i}}, \mathrm{Y}=\mathrm{e}_{\mathrm{j}}$
(2.07) $\widetilde{C}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}, \mathrm{Z}\right)=\mathrm{K}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}, \mathrm{Z}\right)-\frac{1}{(n+4)}\left[\mathrm{g}\left(\mathrm{e}_{\mathrm{j}}, \mathrm{Z}\right)\left\{\lambda_{\mathrm{j}} \mathrm{e}_{\mathrm{i}}+\mathrm{e}_{\mathrm{i}} \lambda_{\mathrm{i}}+\mu \mathrm{T}\right\}\right.$ $-\mathrm{g}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{Z}\right)\left\{\lambda_{\mathrm{i}} \mathrm{e}_{\mathrm{j}}+\mathrm{e}_{\mathrm{j}} \lambda_{\mathrm{j}}+\mu \mathrm{T}\right\}+\mathrm{g}\left(\mathrm{Fe}_{\mathrm{j}}, \mathrm{Z}\right)\left\{\lambda_{\mathrm{i}} \mathrm{Fe}_{\mathrm{i}}+\lambda_{\mathrm{i}} \mathrm{Fe}_{\mathrm{i}}\right\}-\mathrm{g}\left(\mathrm{Fe}_{\mathrm{i}}, \mathrm{Z}\right)\{$ $\left.\left.\lambda_{\mathrm{i}} \mathrm{Fe}_{\mathrm{j}}+\lambda_{\mathrm{j}} \mathrm{Fe}_{\mathrm{j}}\right\}-2 \mathrm{~g}\left(\mathrm{Fe}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right)\left\{\lambda_{\mathrm{i}} \bar{Z}+\mathrm{K}(\bar{Z})\right\}\right]+\frac{k}{(n+2)(n+4)}\left[\mathrm{g}\left(\mathrm{e}_{\mathrm{j}}, \mathrm{Z}\right) \mathrm{e}_{\mathrm{i}}-\right.$ $\left.\mathrm{g}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{Z}\right) \mathrm{e}_{\mathrm{j}}+\mathrm{g}\left(\mathrm{Fe}_{\mathrm{j}}, \mathrm{Z}\right) \mathrm{Fe}_{\mathrm{i}} \mathrm{g}\left(\mathrm{Fe}_{\mathrm{i}}, \mathrm{Z}\right) \mathrm{Fe}_{\mathrm{j}}-2 \mathrm{~g}\left(\mathrm{Fe}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right) \bar{Z}\right]$

Further putting $\mathrm{Z}=\mathrm{e}_{\mathrm{k}}$ in the above equation, we get
(2.08) $\widetilde{C}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{k}}\right)=\mathrm{K}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{k}}\right)-\frac{1}{(n+4)}\left[\mathrm{g}\left(\mathrm{Fe}_{\mathrm{j}}, \mathrm{e}_{\mathrm{k}}\right)\left\{\lambda_{\mathrm{j}} \mathrm{Fe}_{\mathrm{i}}+\lambda_{\mathrm{i}}\right.\right.$ $\left.\left.\mathrm{Fe}_{\mathrm{i}}\right\}-\mathrm{g}\left(\mathrm{Fe}_{\mathrm{i}}, \mathrm{e}_{\mathrm{k}}\right)\left\{\lambda_{\mathrm{i}} \mathrm{Fe}_{\mathrm{j}}+\lambda_{\mathrm{j}} \mathrm{Fe}_{\mathrm{j}}\right\}-2 \mathrm{~g}\left(\mathrm{Fe}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right)\left\{\lambda_{\mathrm{i}} \mathrm{Fe}_{\mathrm{k}}+\lambda_{\mathrm{k}} \mathrm{Fe}_{\mathrm{k}}\right\}\right]$
$+\frac{k}{(n+2)(n+4)}\left[\mathrm{g}\left(\mathrm{Fe}_{\mathrm{j}}, \mathrm{e}_{\mathrm{k}}\right) \mathrm{Fe}_{\mathrm{i}}-\mathrm{g}\left(\mathrm{Fe}_{\mathrm{i}}, \mathrm{e}_{\mathrm{k}}\right) \mathrm{Fe}_{\mathrm{j}}-2 \mathrm{~g}\left(\mathrm{Fe}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right) \mathrm{Fe}_{\mathrm{k}}\right]$
Contracting above equation with respect to e_{i}, we get (2.09) $C_{1}^{1} \widetilde{C}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{k}}\right)=\mathrm{C}^{*}\left(\mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{k}}\right)=0, \forall \mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{k}}$ So, we have,

Theorem (2.11): In a Cosymplectic manifold M_{n} admitting an orthonormal basis normal to the contact vector T, we have
$C_{1}^{1} \widetilde{C}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{k}}\right)=\mathrm{C}^{*}\left(\mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{k}}\right)=0, \forall \mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{k}}$
Proof: The proof of the theorem immediately follows from the equation (2.09),

Again taking $\mathrm{Z}=\mathrm{e}_{\mathrm{j}}$ in (2.07), we get
(2.10) $\widetilde{C}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{j}}\right)=\mathrm{K}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{j}}\right)-\frac{1}{(n+4)}\left[\lambda_{\mathrm{j}} \mathrm{e}_{\mathrm{i}}+\mathrm{e}_{\mathrm{i}} \lambda_{\mathrm{i}}+\mu \mathrm{T}\right\}$
$\left.-3 \mathrm{~g}\left(\mathrm{Fe}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right)\left\{\lambda_{\mathrm{i}} \mathrm{Fe}_{\mathrm{j}}+\lambda_{\mathrm{j}} \mathrm{Fe}_{\mathrm{j}}\right\}\right]+\frac{k}{(n+2)(n+4)}\left[\mathrm{e}_{\mathrm{i}}-3 \mathrm{~g}\left(\mathrm{Fe}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right) \mathrm{Fe}_{\mathrm{j}}\right]$ Or
(2.11)(a) ${ }^{〔} \widetilde{C}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{i}}\right)={ }^{\mathrm{C}} \mathrm{K}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{i}}\right)-\frac{1}{(n+4)}\left[\left(\lambda_{\mathrm{i}}+\lambda_{\mathrm{j}}\right)+\right.$ $\left.3 g\left(\mathrm{Fe}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right)^{2}\left(\lambda_{\mathrm{i}}+\lambda_{\mathrm{j}}\right)\right]+\frac{k}{(n+2)(n+4)}\left[1-3 \mathrm{~g}\left(\mathrm{Fe}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right)^{2}\right]$
Or
(2.11)(b) ‘ $\widetilde{C}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{i}}\right)={ }^{\prime} \mathrm{K}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{i}}\right)+\frac{1}{(n+4)}\left[\left(\lambda_{\mathrm{i}}+\lambda_{\mathrm{j}}\right)+\right.$ $\left.3\left(\lambda_{\mathrm{i}}+\lambda_{\mathrm{j}}\right) \mathrm{g}\left(\mathrm{Fe}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right)^{2}\right]+\frac{k}{(n+2)(n+4)}\left[1-3 \mathrm{~g}\left(\mathrm{Fe}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right)^{2}\right]$

And by using (1.42), (1.43); (2.11)(b) can be rewritten as,
(2.12) ${ }^{`} \widetilde{C}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{i}}\right)=\mathrm{k}^{*}+\frac{1}{(n+4)}\left[\left(\lambda_{\mathrm{i}}+\lambda_{\mathrm{j}}\right)+3\left(\lambda_{\mathrm{i}}+\lambda_{\mathrm{j}}\right) \mathrm{g}\left(\mathrm{Fe}_{\mathrm{i}}\right.\right.$, $\left.\left.\mathrm{e}_{\mathrm{j}}\right)^{2}\right]-\frac{k}{(n+2)(n+4)}\left[1-3 \mathrm{~g}\left(\mathrm{Fe}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right)^{2}\right]$

Theorem (2.12): In a Cosymplectic manifold M_{n}, admitting an orthonormal basis, given above, the sectional curvature k^{*} of M_{n} in the plane of unit vectors $\left(e_{i}, e_{j}\right)$ is given as,
(2.13) $\mathrm{k}^{*}+\frac{1}{(n+4)}\left[\left(\lambda_{\mathrm{i}}+\lambda_{\mathrm{j}}\right)+3\left(\lambda_{\mathrm{i}}+\lambda_{\mathrm{j}}\right) \mathrm{g}\left(\mathrm{Fe}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right)^{2}\right]-\frac{k}{(n+2)(n+4)}[1$ $\left.-3 \mathrm{~g}\left(\mathrm{Fe}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right)^{2}\right]=0$
Provided that H - Conformal curvature tensor vanishes in M_{n}.
Proof: In the equation (2.12), if $\widetilde{C}=0$, then (2.12) immediately follows.

Corollary (2.12): In a Cosymplectic manifold M_{n}, with the orthonormal basis, under consideration and with vanishing $\mathrm{H}-$ Conformal curvature tensor, the sectional curvature k^{*} is given as,
(2.14)(a) $\mathrm{k}^{*}=-\frac{2\left(\lambda_{\mathrm{i}}+\lambda_{\mathrm{j}}\right)}{(n+4)}-\frac{2 k}{(n+2)(n+4)}$

Provided that Fe_{i} is parallel to e_{j}
$(2.14)(\mathrm{b}) \mathrm{k}^{*}=-\frac{\left(\lambda_{\mathrm{i}}+\lambda_{\mathrm{j}}\right)}{(n+4)}-\frac{k}{(n+2)(n+4)}$
Provided that Fe_{i} is perpendicular to e_{j}
The proof of the above corollary follows immediately from above conditions and equation (2.13).

2. Conclusion

1. If $\left\{\mathrm{e}_{\mathrm{i}}, \mathrm{Fe}_{\mathrm{j}}\right\}, \mathrm{i}=1,2,3$ \qquad 2 m ; be an orthonormal basis normal to T in M_{n}, and if M_{n} be a cosymplectic manifold then H-Conformal curvature tensor \widetilde{C} equals the RiemannCurvature tensor in M_{n}.
2. Let M_{n} be a cosymplectic manifold admitting an orthonormal basis $\left\{\mathrm{e}_{\mathrm{i}}, \mathrm{Fe}_{\mathrm{j}}\right\}, \mathrm{i}=1,2,3 \ldots \ldots \ldots .2 \mathrm{~m}$; normal to T . Then H -Conformal curvature tensor \widetilde{C} vanishes. if M_{n} is flat with respect to this basis.
3. In a Cosymplectic manifold M_{n} admitting an orthonormal basis normal to the contact vector T , we have $C_{1}^{1} \widetilde{C}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{k}}\right)$ $=C^{*}\left(\mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{k}}\right)=0, \forall \mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{k}}$
4. In a Cosymplectic manifold M_{n}, admitting an orthonormal basis, given above, the sectional curvature k^{*} of M_{n} in the plane of unit vectors $\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right)$ is given as,
$\mathrm{k}^{*}+\frac{1}{(n+4)}\left[\left(\lambda_{\mathrm{i}}+\lambda_{\mathrm{j}}\right)+3\left(\lambda_{\mathrm{i}}+\lambda_{\mathrm{j}}\right) \mathrm{g}\left(\mathrm{Fe}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right)^{2}\right]-\frac{k}{(n+2)(n+4)}[1-$
$\left.3 \mathrm{~g}\left(\mathrm{Fe}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right)^{2}\right]=0$
Provided that H - Conformal curvature tensor vanishes in M_{n}.
5. In a Cosymplectic manifold M_{n}, with the orthonormal basis, under consideration and with vanishing H - Conformal curvature tensor, the sectional curvature k^{*} is given as $\mathrm{k}^{*}=-\frac{2\left(\lambda_{\mathrm{i}}+\lambda_{\mathrm{j}}\right)}{(n+4)}-\frac{2 k}{(n+2)(n+4)}$, Provided that Fe_{i} is parallel to e_{j}. $\mathrm{k}^{*}=-\frac{(\lambda \mathrm{i}+\lambda \mathrm{j})}{(n+4)}-\frac{k}{(n+2)(n+4)}$, Provided that Fe_{i} is perpendicular to e_{j}.

References

[1] Tokagi, H and Watanabe, Y, Kählerian manifold with vanishing Bochnew curvature tensor satisfying $R(X . Y) . R_{1}=0$ Harkaido math. Soc. Vol. 7(2), pp. 119-122.
[2] Yano K, On contact conformal connection; Kodia Math. Rep., 28(1976), pp. 90-103.
[3] Mishra R. S., Structures on differentiable manifold and their applications, Chandrama Prakashan, Allahabad India (1984).
[4] Pandey S. N., Some contributions to differential geometry of differentiable manifolds, Thesis (1979), B.H.U. Varanasi (India).

