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Abstract: Tokagi, H and Watanabe [1] Yano, Y. [2], Mishra,
R.S. [3], Pandey [4] etc., have studied H-Conformal Curvature
tensor C, The studies of Cosymplectic manifold with orthogonal
basis equipped with different structure have been made by Yano
[2 ], Tokagi [1] and Mishra[3].

Here we have discussed Cosymplectic manifold Mn (n=2m+1)
possessing the orthonormal basis {ei, Fei}, i=1, 2, 3------------- 2m of
unit vector which are normal to the contact vector T, we have
obtained the expression relating the sectional curvature and scalar
curvature in H-Conformal € curvature tensor.
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1. Introduction

Let My, n = 2m+1 be an almost contact metric (almost
Grayan) manifold equipped with an almost contact metric
structure,

{F, T, A, g} satisfying:

1)@ PFPX=-X+AX)T

(1.1) (b) A(FT)=0

(1.1)(c) FT=0

1.1nHd AM=0

(12)@ 9X.¥) = g(X)Y) - AX)A(Y)

(1.2)(b) g(T. X) = AX) )

(12)c) ‘FX,Y)¥gX,Y)=-g(X,Y)=-F,X)
Where

(1.2)(d) X & FX,

For all C* vector fields X, Y in My, here F is a structure tensor
of type (1, 1), Ais a 1- form, T is a contravariant vector field
associated with A, g is a fundamental metric tensor and ‘F is a
fundamental 2- form.

Let D be a Levi - cevita or Riemannian curvature tensor in
M. If in My, the structure tensor F and the contact form A are
covariantly constant i.e.

(1.3)  (DxF)(Y) =0

(1.4)(a) (D«A)(Y) =0

(1.4)(b) DT =0

Then M, is called a Cosymplectic Manifold [2] and [3].

1.40. Ortho-normal basis in My:

Let a point X € M, {e1, €2, €3,............ eom, Feq, Feo........
Fezm}, be an orthonormal basis of the tangent space Tx (M),
such that

(1.40)(a) K (&) =Aigi + T
K (Fei) =AiFei, fori=123,.......... 2m.

Where T is such that

(1.40)(b) g(ei, T) =0,

i.e. T is orthogonal to e;, fori=1,2,3....... 2m. The result in
(1.40) are analogous to those in [1].

Since in cosymplectic manifold M, (1.3) implies

(1.41)(a) K(X, Y, Z2)=K(X,Y, 2)

(1.41)(b) Ric(Y, Z) = Ric(Y, Z2) =-g(K(Y ) ,2)

and

(1.41)(c) K(Y)= K (¥)

We know that sectional curvature k* of M, in the plane of the
unit vector X and Y at any point p € M, is defined by [3].

(1.42) k* = (KXY X Y)(EXX)9(Y,Y)-{g(X.Y)})

So the sectional curvature of M in the plane of e;, gj, is given
by,

(1.43) k*=‘K (ej, &, €j, &)

Since g (gj, &) = 0, and g(e;j, &) = 1, as the e;, ej are mutually
perpendicular.

Now H-conformal € curvature tensor is given by[1],[2],[3]
(2.00) T(X,Y,ZW)¥ g(C(X,Y,2),W)
= K(X,Y,Z,W) - —{Ric(Y,Z)g(XW) - Ric(X,Z)g(Y W)

(n+4)
+Ric(Y,Z)’F(X,W) - Ric(X,Z)’F(Y,W) + F(Y,Z)Ric(X,W)
-‘F(X,Z)Ric(Y , W)+g(Y,Z)Ric(X,W)- g(X,Z)Ric(Y,W)
- 2Ric(X,Y )’F(Z,W) - 2’F(X,Y)Ric(Z,W)}
<Y, Z)g(XW)-g(X,Z)z(Y, W)+ F(Y,Z) F(X,W)

—
n+2)(n+4)

~“F(X,Z)’F(Y,W) - 2’F(X,Y)’F(Z,W)]

Further, from equation (2.00) H-conformal C curvature
tensor is given as,

(2.01) T(X,Y,2) = K(X,Y,2) - (n+[Ric(Y,Z)X - Ric(X,2)Y

4)

+Ric(Y,2)X-Ric(X,2)Y+K(X)g(Y,2)-K(Y)g(X,2)+
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K()g(Y.2)- K(7)g(X,2)-2Ric(X,Y)Z-2K(Z2)g(X,Y)]
[9(Y,2)X-9(X,2)Y+9(Y,2)X-9(X,2)Y)-29(X,Y)Z]

—
(n+2)(n+4—)

For Z=T, (2.01) becomes,

- K(Y)A(X) + K(X)A(Y)]+ [A(Y)X - A(X)Y]

(n+2)(n+4)
Now, putting X = e;j, Y= ¢gj in above equation ,we get

(2.03) Tlei &, T) = K(ei &, T) - - lei- el

Also from (2.02), we get

(2.04) CX,Y,T) =KX, Y, T)

Again putting X=e;, Y= g; in (2.04), we get
(2.05) C(Fei,Fej,T) = K(Fei,Fe;, T)
Further from (2.03), we obtained

(2.06) C(eiej.ex, T) = K(eiejex, T)

Since g(ei,ex) =0=g(ej.e), i#j#k

Thus, we have,

Theorem(2.10): Let M, be a cosymplectic manifold .if { e
Feit, =123 2m; be an orthonormal basis normal to T
in M, , then H-Conformal curvature tensor C equals the
Riemann-Curvature tensor in Mp,

Proof: The proof of the theorem follows immediately from
the equation (2.05) and (2.06).

Corollary (2.11): Let M, be a cosymplectic manifold
admitting an orthonormal basis {e;, Fej}, i= 1,2,3.......... 2m;
normal to T . Then H-Conformal curvature tensor C vanishes.
if My is flat with respect to this basis.

The proof of the corollary is obvious from the above theorem.

Now, (2.01) gives for X=e;j, Y=g

(2.07) C(ei g, 2) =K(ei g, 2) - - +4)[g(e, Z){\ei+eiki +uT}

- g(ei, Z){ hiej+eidy +UT Hg(FeZ){ Ai Fei +7w Fei}-g(Fei,2){
%iFej+; Fej }-2g(Fei ep{ i Z +K(2)}] + m[g(ej Z)ei -
g(ei,2)e; +g(Fej, Z2)Fei-g(Fei ,Z)Fe; -2g(Fei ,6)Z]

Further putting Z= ey in the above equation we get
(2.08) C(ei & ,ex) = K(ei,gj, €x) - - +4)[g(Fe, ex) {A Fei+ Ai
Fei} - g(Fei, ex){ XiFej+ A Fej } -2g(Fei &) { Ai Fex + MFex }]
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[g(Fej, ex)Fei - g(Fei, ex)Fej -2g(Fe;i ,ej)Fex]

(n+2)(n+4-)

Contracting above equation with respect to e;, we get
(2.09) Ci C(ei gj,e) = C'(e,e0) =0, Veex
So, we have,

Theorem (2.11): In a Cosymplectic manifold M, admitting
an orthonormal basis normal to the contact vector T, we have

CL Cei 8,8 = C'(ej,ex) =0, Vejex

Proof: The proof of the theorem immediately follows from
the equation (2.09),

Again taking Z = gj in (2.07), we get

(2.10) C(ei g &) = K(ei &j, e,)

- 3g(Fei, &){ AiFej+ A Fej}]+

Or

2.11)(a) ¢ ?(ei & ,ej,ei) =
3g(Fei, &)*(hi + 4]+

Or

(2.11)(b) * C(ei & .8, ei) =

3( i +2)g(Fei, )7+

x,e. +eihi + T}
[ei - 3g(Fei, ej)Fe; ]

(n+2)(n+4)

‘Kei.ej, € ,8i) - [(Ai + ) +

(n+4) +4)

[1-3g(Fei, &)*]

(n+2)(n+4)

‘Kei ej, € €i) + [ +X) +

(n +4)

[1 - 3g(Fei, €)*]

(n+2)(n+4)

And by using (1.42), (1.43); (2.11)(b) can be rewritten as,

(2.12) ¢ C(e. €.e.ei) =K +(
&)1 ——[1 - 39(Fei, &)’]

04+ 29) +3( ki + 1)g(Fes

(n+2)( +4)

Theorem (2.12): In a Cosymplectic manifold M,, admitting
an orthonormal basis, given above, the sectional curvature k™ of
M in the plane of unit vectors (ej g;) is given as,

(2.13) k” + [(kI + ) 3N + A)g(Fei, 6)7-

3g(Fer )] =0

Provided that H- Conformal curvature tensor vanishes in M.

Proof: In the equation (2.12) , if C = 0, then (2.12)
immediately follows.

Corollary (2.12): In a Cosymplectic manifold M,, with the
orthonormal basis, under consideration and with vanishing H —
Conformal curvature tensor, the sectional curvature k™ is given
as,

[1

(n+2)(n+4—)

w_ 200+A) 2k
(21)@k = - (n+4)  (n+2)(n+d)
Provided that Fe; is parallel to e

. Qi+A) k
(2.14)(b) k™= - (n+4)  (n+2)(n+d)

Provided that Fe; is perpendicular to e

The proof of the above corollary follows immediately from
above conditions and equation (2.13).
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2. Conclusion

Cdf{eiFet, =123 2m; be an orthonormal basis
normal to T in M, ,and if M, be a cosymplectic manifold
then H-Conformal curvature tensor C equals the Riemann-
Curvature tensor in M .

. Let M, be a cosymplectic manifold admitting an
orthonormal basis {e; ,Fej }, i= 1,2,3.......... 2m; normal to
T . Then H-Conformal curvature tensor C vanishes. if My
is flat with respect to this basis.

. In a Cosymplectic manifold M, admitting an orthonormal
basis normal to the contact vector T, we have C{ C(ei,ej,ex)
= C*( ej,e) =0, Vejex

. In a Cosymplectic manifold M,, admitting an orthonormal
basis, given above, the sectional curvature k™ of M, in the
plane of unit vectors (ej,g;j) is given as,

[ + ) +3( A+ A)g(Fei , &) -

(n+4)

_k
(n+2)(n+4)

kK* +

-

3g(Fei, €;)°] =0

5.

k*_

*

[1]

[2]
(3]
(4]

Provided that H- Conformal curvature tensor vanishes in M.
In a Cosymplectic manifold My, with the orthonormal basis,
under consideration and with vanishing H — Conformal
curvature tensor, the sectional curvature k™ is given as

C 2043 2k . r _
= s e Provided that Fe; is parallel to ;.
Qi+ k

D) DD’ Provided that Fe; is perpendicular to e;,
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