
International Journal of Research in Engineering, Science and Management

Volume 4, Issue 11, November 2021

https://www.ijresm.com | ISSN (Online): 2581-5792

*Corresponding author: nandila2711@gmail.com

60

Abstract: Fruit Classification has become a riveting topic in

computer vision. Traditional fruit classification processes are

generally based on visual ability and such methods can be very

tedious, inconsistent and time consuming. In agriculture science,

fruit classification can be found highly beneficial. Hence

researches in this area indicate the feasibility of using deep

learning models to improve product quality while liberating

people from the traditional hand sorting of fruits. In this project

an extensive dataset of 3 varieties of fruits is considered. With this

dataset, an ImageNet pre-trained convolutional neural network

was fine-tuned to obtain a classifier. This classifier is optimized to

obtain high accuracy in less time for the classification of rotten and

fresh fruits.

Keywords: CNN, Python, Transfer learning, Deep learning,

Tensorflow, Keras.

1. Proposed System

The novelty of my work is to provide a classification system

which can classify rotten and fresh fruits in less time with very

high efficiency.

2. Existing System

Hyperspectral fruit and vegetable classification using

convolutional neural networks, Jan Steinbrener, Konstantin

Posch, Raimund Leitner.

In this paper, they show an easy way to classify hyperspectral

images with state of the art convolutional neural networks pre-

trained for RGB image data.

Fruit Image Classification Using Convolutional Neural

Networks, Shawon Ashraf, Ivan Kadery, Md Abdul Ahad

Chowdhury, Tahsin Zahin Mahbub and Rashedur M. Rahman.

They built the initial model using the Inception V3 model and

trained with our dataset applying transfer learning to predict if

the fruit is rotten or fresh in the given dataset

3. The Dataset

Fig. 1. Image samples from the dataset

The dataset comes from Kaggle, there are 6 categories of

fruits: fresh apples, fresh oranges, fresh bananas, rotten apples,

rotten oranges, and rotten bananas.10904 images for testing

data and 2698 images for training data.

4. Algorithms and Concepts Used

A. Convolution Neural Network (CNN)

CNN is also known as feed forward neural network which is

mainly used for image classification. They are often upto 20-30

layers which include input layer, dense layer , output layer with

activation function etc.

B. ImageNet

ImageNet7 is a large scale image database. ImageNet as a

foundation when applied in training techniques on CNN they

categories the database provides.

C. Keras

Keras is an open-source neural-network library written in

Python, which is used for the evaluating, preprocessing,

modeling, and optimization. It is capable of running on top of

TensorFlow.

D. Softmax Activation Function

The softmax function is used as the activation function in the

output layer of neural network models that predict a

multinomial probability distribution. That is is used as the

activation function for multi-class classification problems

where class membership is required on more than two class

labels.

E. Project Layout

Steps followed are:

Step 1: Loading ImageNet Base Model

The ImageNet pre-trained models are often good choices for

computer vision transfer learning, as they have learned to

classify various different types of images. So we start by

downloading the pre-trained model. This is available directly

from the Keras library

Step 2: Freeze Base Model

This is done so that all the learning from the ImageNet

dataset does not get destroyed in the initial training.

Step 3: Add Layers to Model

Then we add layers to the pretrained model

Step 4: Compile Model

Fruit Quality Classification Using CNN

Nandila Bhattacharjee*

Student, Department of Computer Science Engineering, SRM Institute of Science and Technology, Chennai, India

N. Bhattacharjee et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 11, NOVEMBER 2021 61

Compilation is done using compile function with categorical

cross entropy and adams optimizer.

Step 5: Augment the Data

Keras comes with an image augmentation class called Image

Data Generator

Step 6: Load Dataset

Mounted on google drive then we are going to load images

directly from folders using Keras' flow_from_directory

function.

Step 7: Train the Model

Pass the train and valid iterators into the fit function, as well

as setting your desired number of epochs.

Step 8: Unfreeze Model for Fine Tuning

We unfreeze the entire model and train it again with a very

small learning rate. This will cause the base pre-trained layers

to take very small steps and adjust slightly, improving the

model by a small amount.

Step 9: Evaluate the Model

The evaluate function will return a tuple, where the first value

is your loss, and the second value is your accuracy.

F. Code

from tensorflow import keras

base_model = keras.applications.VGG16(

weights='imagenet', # Load weights pre-trained on

ImageNet.

 input_shape=(224, 224, 3),

 include_top=False)

base_model.trainable = False

inputs = keras.Input(shape=(224, 224, 3))

x = base_model(inputs, training=False)

pooling layer or flatten layer

x = keras.layers.GlobalAveragePooling2D()(x)

Add final dense layer

outputs = keras.layers.Dense(6, activation = 'softmax')(x)

model = keras.Model(inputs, outputs)

model.summary()

model.compile(loss='categorical_crossentropy',

optimizer='adam',metrics=['accuracy'])

from

tensorflow.keras.preprocessing.imageimport

ImageDataGenerator

datagen = ImageDataGenerator(samplewise_center=True,

set each sample mean to 0

rotation_range=10,

randomly rotate images in the range (degrees, 0 to 180)

zoom_range = 0.1, # Randomly zoom image

width_shift_range=0.1, # randomly shift images horizontally

(fraction of total width)

height_shift_range=0.1, # randomly shift images vertically

(fraction of total height)

horizontal_flip=True, # randomly flip images

vertical_flip=False) # we don't expect fruit to be upside-

down so we will not flip vertically

load and iterate training dataset

train_it=

datagen.flow_from_directory('/content/drive/MyDrive/dataset/

train',

 target_size=(224, 224),

 color_mode='rgb',

 class_mode="categorical")

load and iterate validation dataset

valid_it =

datagen.flow_from_directory('/content/drive/MyDrive/dataset/

test',

 target_size=(224, 224),

 color_mode='rgb',

 class_mode="categorical")

model.fit(train_it,

 validation_data=valid_it,

 steps_per_epoch=train_it.samples/train_it.batch_size,

 validation_steps=valid_it.samples/valid_it.batch_size,

 epochs=5)

Unfreeze the base model

base_model.trainable = True

Compile the model with a low learning rate

model.compile(optimizer=keras.optimizers.RMSprop(learni

ng_rate = .00001),

loss=

keras.losses.CategoricalCrossentropy(from_logits=True) ,

metrics =[keras.metrics.CategoricalAccuracy()])

model.fit(train_it,

 validation_data=valid_it,

 steps_per_epoch=train_it.samples/train_it.batch_size,

 validation_steps=valid_it.samples/valid_it.batch_size,

 epochs=5)

model.evaluate(valid_it,

steps=valid_it.samples/valid_it.batch_size)

G. Code Screenshots and Explanation

Fig. 2. Loading ImageNet base model

The ImageNet pre-trained models are often good choices for

computer vision transfer learning, as they have learned to

classify various different types of images. In doing this, they

have learned to detect many different types of features that

could be valuable in image recognition. Hence the first step is

downloading the pre-trained model. This is available directly

from the Keras library. As we are downloading, there is going

to be an important difference. The last layer of an ImageNet

model is a dense layer of 1000 units, representing the 1000

possible classes in the dataset. In our case, we want it to make

a different classification: is this rotten or not? Because we want

the classification to be different, we are going to remove the last

layer of the model. We can do this by setting the flag

include_top=False when downloading the model. After

removing this top layer, we can add new layers that will yield

the type of classification that we want:

N. Bhattacharjee et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 11, NOVEMBER 2021 62

Fig. 3. Freeze base model

This is done so that all the learning from the ImageNet

dataset does not get destroyed in the initial training.

Freezing the model's pre-trained layers. This means that

when we train, we will not update the base layers from the pre-

trained model. Instead we will only update the new layers that

we add on the end for our new classification. We freeze the

initial layers because we want to retain the learning achieved

from training on the ImageNet dataset. If they were unfrozen at

this stage, we would likely destroy this valuable information.

There will be an option to unfreeze and train these layers later,

in a process called fine-tuning. Freezing the base layers is as

simple as setting trainable on the model to False.

Fig. 4. Add layers to model

Fig. 5. Model summary

The addition of a pooling layer after the convolutional layer

is a common pattern used for ordering layers within a

convolutional neural network that may be repeated one or more

times in a given model. The pooling layer operates upon each

feature map separately to create a new set of the same number

of pooled feature maps.

The pooling layer operates upon each feature map separately

to create a new set of the same number of pooled feature maps.

Most of the time the Softmax Function is related to the Cross

Entropy Function.

Fig. 6. Compile model

 The need for cross entropy is so in working out the cross

entropies of each observation shows that when the model

incorrectly predicted 1 with a low probability, there was a

smaller loss than when the model incorrectly predicted 0 with a

high probability. Minimizing this loss function will prevent

high probabilities from being assigned to incorrect predictions.

Adam Optimizer Adam is an optimization algorithm that can

be used instead of the classical stochastic gradient descent

procedure to update network weights iterative based in training

data

Above the metric accuracy is Number of correct predictions.

Fig. 7. Accuracy

Fig. 8. Augment the data

Keras comes with an image augmentation class called Image

Data Generator which is used to allow the model to see a wider

variety of images to learn from. This will help it learn to

recognize new pictures of fruits instead of just memorizing the

pictures it trains on.

Fig. 9. Load dataset

Mounted on google drive then we are going to load images

directly from folders using Keras' flow_from_directory

function.

N. Bhattacharjee et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 11, NOVEMBER 2021 63

Fig. 10. Train the model

Pass the train and valid iterators into the fit function, as well

as setting your desired number of epochs.

Fig. 11. Unfreeze model for fine tuning

Unfreeze the entire model and train it again with a very small

learning rate. This will cause the base pre-trained layers to take

very small steps and adjust slightly, improving the model by a

small amount. Note that it is important to only do this step after

the model with frozen layers has been fully trained. The

untrained pooling and classification layers that we added to the

model earlier were randomly initialized. This means they

needed to be updated quite a lot to correctly classify the images.

Through the process of backpropagation, large initial updates

in the last layers would have caused potentially large updates in

the pre-trained layers as well. These updates would have

destroyed those important pre-trained features. However, now

that those final layers are trained and have converged, any

updates to the model as a whole will be much smaller

(especially with a very small learning rate) and will not destroy

the features of the earlier layers.

Fig. 12. Evaluate the model

The evaluate function will return a tuple, where the first value

is your loss, and the second value is your accuracy. The

achieved accuracy is 99.89.

5. Conclusion

A new model for classifying fruits using convolutional neural

networks is proposed in this paper. The model developed has

an accuracy of 99.89 % on testing data. This result is obtained

after training the data with 3 fruits and 6 categories with 10904

images in the training data set and 2698 images in the testing

data. This paper explores a fruits classification based on CNN

Algorithm with transfer learning approach. This paper deals

with various methods and algorithms used for fruit

classification. CNN better performance to attain better fruit

classification with the use of softmax activation function in

output layer and adam optimizer.

Fig. 12.

Fig. 13.

6. Future Scope

Hopefully in future this process can spread to more varieties

of dataset of fruits as well as vegetables. Also plan to implement

some other CNN based models with different activation

functions and approaches to compare the accuracy on the same

dataset. Would also like to work on some more features for

grading and classification, which can identify types of disease

and/or texture structure of fruits.

References

[1] Khatun, Mehenag & Nine, Julker & Ali, Md. Forhad & Sarker, Pritom &

Turzo, Nakib. (2020). Fruits Classification using Convolutional Neural
Network. 5. 1-6.

[2] Jan Steinbrener, Konstantin Posch, Raimund Leitner, Hyperspectral fruit

and vegetable classification using convolutional neural networks,
Computers and Electronics in Agriculture, Volume 162, pp. 364-372,

2019.

[3] X. Liu, D. Zhao, W. Jia, W. Ji, C. Ruan and Y. Sun, "Cucumber Fruits
Detection in Greenhouses Based on Instance Segmentation," in IEEE

Access, vol. 7, pp. 139635-139642, 2019.

[4] Guanjun Bao, Shibo Cai, Liyong Qi, Yi Xun, Libin Zhang, Qinghua
Yang, Multi-template matching algorithm for cucumber recognition in

natural environment, Computers and Electronics in Agriculture, Volume

127, pp. 754-762, 2016.
[5] https://www.igi-global.com/article/fruit-image-classification-using-

convolutional-neural-networks/236206

[6] Fruit Veg CNN: Power- and Memory-Efficient Classification of Fruits &
Vegetables Using CNN in Mobile MPSoC (techrxiv.org)

[7] Sebastian Kwiatkowski, The Fruits of Deep Learning: How

Convolutional Neural Networks Support Robotic Harvesting and Yield
Mapping, Towards Data Science.

[8] Shiv Ram Dubey and Anand Singh Jalal "Application of Image

Processing in Fruit and Vegetable Analysis” A Review.

[9] Kavdır, I., Guyer, D. E.: Comparison of Artificial Neural Networks and

Statistical Classifiers in Apple Sorting using Textural Feature, Biosystems
Engg. 89,331-344, 2004.

[10] Ms. Snehal Mahajan, S. T. Patil “Optimization and Classification of Fruit

using Machine Learning Algorithm”, International Journal for Innovative
Research in Science & Technology Vol.3- No 01 June 2016.

[11] Dubey, Shiv Ram, and A. S. Jalal. "Robust approach for fruit and

vegetable classification." Procedia Engineering 38 (2012): 3449-3453.
[12] V. Leemans and M. F. Destain, “A real-time grading method of apples

based on features extracted from defects,” J. Food Eng., vol. 61, no. 1, pp.

83-89, Jan. 2004.
[13] T. N. Do and J. D. Fekete, “Large scale classification with support vector

machine algorithms,” in Proc. 6th Int. Conf. Mach. Learn. Appl.,

Cincinnati, OH.

