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Abstract: Fruit Classification has become a riveting topic in 

computer vision. Traditional fruit classification processes are 

generally based on visual ability and such methods can be very 

tedious, inconsistent and time consuming.  In agriculture science, 

fruit classification can be found highly beneficial. Hence 

researches in this area indicate the feasibility of using deep 

learning models to improve product quality while liberating 

people from the traditional hand sorting of fruits.  In this project 

an extensive dataset of 3 varieties of fruits is considered. With this 

dataset, an ImageNet pre-trained convolutional neural network 

was fine-tuned to obtain a classifier. This classifier is optimized to 

obtain high accuracy in less time for the classification of rotten and 

fresh fruits. 

 

Keywords: CNN, Python, Transfer learning, Deep learning, 

Tensorflow, Keras. 

1. Proposed System 

The novelty of my work is to provide a classification system 

which can classify rotten and fresh fruits in less time with very 

high efficiency. 

2. Existing System 

Hyperspectral fruit and vegetable classification using 

convolutional neural networks, Jan Steinbrener, Konstantin 

Posch, Raimund Leitner. 

In this paper, they show an easy way to classify hyperspectral 

images with state of the art convolutional neural networks pre-

trained for RGB image data. 

Fruit Image Classification Using Convolutional Neural 

Networks, Shawon Ashraf, Ivan Kadery, Md Abdul Ahad 

Chowdhury, Tahsin Zahin Mahbub and Rashedur M. Rahman. 

They built the initial model using the Inception V3 model and 

trained with our dataset applying transfer learning to predict if 

the fruit is rotten or fresh in the given dataset 

3. The Dataset 

 
Fig. 1.  Image samples from the dataset 

 

 

The dataset comes from Kaggle, there are 6 categories of 

fruits: fresh apples, fresh oranges, fresh bananas, rotten apples, 

rotten oranges, and rotten bananas.10904 images for testing 

data and 2698 images for training data. 

4. Algorithms and Concepts Used 

A. Convolution Neural Network (CNN) 

CNN is also known as feed forward neural network which is 

mainly used for image classification. They are often upto 20-30 

layers which include input layer, dense layer , output layer with 

activation function etc. 

B. ImageNet 

ImageNet7 is a large scale image database. ImageNet as a 

foundation when applied in training techniques on CNN they 

categories the database provides. 

C. Keras 

Keras is an open-source neural-network library written in 

Python, which is used for the evaluating, preprocessing, 

modeling, and optimization. It is capable of running on top of 

TensorFlow. 

D. Softmax Activation Function 

The softmax function is used as the activation function in the 

output layer of neural network models that predict a 

multinomial probability distribution. That is is used as the 

activation function for multi-class classification problems 

where class membership is required on more than two class 

labels. 

E. Project Layout 

Steps followed are: 

Step 1: Loading ImageNet Base Model 

The ImageNet pre-trained models are often good choices for 

computer vision transfer learning, as they have learned to 

classify various different types of images. So we start by 

downloading the pre-trained model. This is available directly 

from the Keras library 

Step 2: Freeze Base Model 

This is done so that all the learning from the ImageNet 

dataset does not get destroyed in the initial training. 

Step 3: Add Layers to Model 

Then we add layers to the pretrained model 

Step 4: Compile Model 
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Compilation is done using compile function with categorical 

cross entropy and adams optimizer. 

Step 5: Augment the Data 

Keras comes with an image augmentation class called Image 

Data Generator  

Step 6: Load Dataset 

Mounted on google drive then we are going to load images 

directly from folders using Keras' flow_from_directory 

function. 

Step 7: Train the Model 

Pass the train and valid iterators into the fit function, as well 

as setting your desired number of epochs. 

Step 8: Unfreeze Model for Fine Tuning 

We unfreeze the entire model and train it again with a very 

small learning rate. This will cause the base pre-trained layers 

to take very small steps and adjust slightly, improving the 

model by a small amount. 

Step 9: Evaluate the Model 

The evaluate function will return a tuple, where the first value 

is your loss, and the second value is your accuracy. 

F. Code 

from tensorflow import keras 

base_model = keras.applications.VGG16( 

weights='imagenet', # Load weights pre-trained on 

ImageNet. 

    input_shape=(224, 224, 3), 

    include_top=False) 

base_model.trainable = False 

inputs = keras.Input(shape=(224, 224, 3)) 

x = base_model(inputs, training=False) 

# pooling layer or flatten layer 

x = keras.layers.GlobalAveragePooling2D()(x) 

# Add final dense layer 

outputs = keras.layers.Dense(6, activation = 'softmax')(x) 

model = keras.Model(inputs, outputs) 

model.summary() 

model.compile(loss='categorical_crossentropy', 

optimizer='adam',metrics=['accuracy']) 

from  

tensorflow.keras.preprocessing.imageimport 

ImageDataGenerator 

datagen = ImageDataGenerator(samplewise_center=True,   

# set each sample mean to 0 

rotation_range=10,   

# randomly rotate images in the range (degrees, 0 to 180) 

zoom_range = 0.1, # Randomly zoom image  

width_shift_range=0.1, # randomly shift images horizontally 

(fraction of total width) 

height_shift_range=0.1, # randomly shift images vertically 

(fraction of total height) 

horizontal_flip=True, # randomly flip images 

vertical_flip=False) # we don't expect fruit to be upside-

down so we will not flip vertically 

# load and iterate training dataset 

train_it= 

datagen.flow_from_directory('/content/drive/MyDrive/dataset/

train', 

                                       target_size=(224, 224),  

                                       color_mode='rgb',  

                                       class_mode="categorical") 

# load and iterate validation dataset 

valid_it = 

datagen.flow_from_directory('/content/drive/MyDrive/dataset/

test', 

                                      target_size=(224, 224),  

                                      color_mode='rgb',  

                                      class_mode="categorical") 

model.fit(train_it, 

          validation_data=valid_it, 

          steps_per_epoch=train_it.samples/train_it.batch_size, 

          validation_steps=valid_it.samples/valid_it.batch_size, 

          epochs=5) 

# Unfreeze the base model 

base_model.trainable = True 

# Compile the model with a low learning rate 

model.compile(optimizer=keras.optimizers.RMSprop(learni

ng_rate = .00001), 

loss= 

keras.losses.CategoricalCrossentropy(from_logits=True) , 

metrics =[keras.metrics.CategoricalAccuracy()] ) 

model.fit(train_it, 

          validation_data=valid_it, 

          steps_per_epoch=train_it.samples/train_it.batch_size, 

          validation_steps=valid_it.samples/valid_it.batch_size, 

          epochs=5) 

model.evaluate(valid_it, 

steps=valid_it.samples/valid_it.batch_size) 

G. Code Screenshots and Explanation 

 
Fig. 2.  Loading ImageNet base model 

 

The ImageNet pre-trained models are often good choices for 

computer vision transfer learning, as they have learned to 

classify various different types of images. In doing this, they 

have learned to detect many different types of features that 

could be valuable in image recognition.  Hence the first step is 

downloading the pre-trained model. This is available directly 

from the Keras library. As we are downloading, there is going 

to be an important difference. The last layer of an ImageNet 

model is a dense layer of 1000 units, representing the 1000 

possible classes in the dataset. In our case, we want it to make 

a different classification: is this rotten or not? Because we want 

the classification to be different, we are going to remove the last 

layer of the model. We can do this by setting the flag 

include_top=False when downloading the model. After 

removing this top layer, we can add new layers that will yield 

the type of classification that we want:  
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Fig. 3.  Freeze base model 

 

This is done so that all the learning from the ImageNet 

dataset does not get destroyed in the initial training.  

Freezing the model's pre-trained layers. This means that 

when we train, we will not update the base layers from the pre-

trained model. Instead we will only update the new layers that 

we add on the end for our new classification. We freeze the 

initial layers because we want to retain the learning achieved 

from training on the ImageNet dataset. If they were unfrozen at 

this stage, we would likely destroy this valuable information. 

There will be an option to unfreeze and train these layers later, 

in a process called fine-tuning. Freezing the base layers is as 

simple as setting trainable on the model to False. 

 

 
Fig. 4.  Add layers to model 

 

 
Fig. 5.  Model summary 

 

The addition of a pooling layer after the convolutional layer 

is a common pattern used for ordering layers within a 

convolutional neural network that may be repeated one or more 

times in a given model. The pooling layer operates upon each 

feature map separately to create a new set of the same number 

of pooled feature maps. 

The pooling layer operates upon each feature map separately 

to create a new set of the same number of pooled feature maps. 

Most of the time the Softmax Function is related to the Cross 

Entropy Function. 

 

 
Fig. 6.  Compile model 

 

 The need for cross entropy is so in working out the cross 

entropies of each observation shows that when the model 

incorrectly predicted 1 with a low probability, there was a 

smaller loss than when the model incorrectly predicted 0 with a 

high probability. Minimizing this loss function will prevent 

high probabilities from being assigned to incorrect predictions. 

Adam Optimizer Adam is an optimization algorithm that can 

be used instead of the classical stochastic gradient descent 

procedure to update network weights iterative based in training 

data 

Above the metric accuracy is Number of correct predictions. 

 

 
Fig. 7.  Accuracy 

 

 
Fig. 8.  Augment the data 

 

Keras comes with an image augmentation class called Image 

Data Generator which is used to allow the model to see a wider 

variety of images to learn from. This will help it learn to 

recognize new pictures of fruits instead of just memorizing the 

pictures it trains on. 

 

 
Fig. 9.  Load dataset 

 

Mounted on google drive then we are going to load images 

directly from folders using Keras' flow_from_directory 

function. 
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Fig. 10.  Train the model 

 

Pass the train and valid iterators into the fit function, as well 

as setting your desired number of epochs. 

 

 
Fig. 11.  Unfreeze model for fine tuning 

 

Unfreeze the entire model and train it again with a very small 

learning rate. This will cause the base pre-trained layers to take 

very small steps and adjust slightly, improving the model by a 

small amount. Note that it is important to only do this step after 

the model with frozen layers has been fully trained. The 

untrained pooling and classification layers that we added to the 

model earlier were randomly initialized. This means they 

needed to be updated quite a lot to correctly classify the images. 

Through the process of backpropagation, large initial updates 

in the last layers would have caused potentially large updates in 

the pre-trained layers as well. These updates would have 

destroyed those important pre-trained features. However, now 

that those final layers are trained and have converged, any 

updates to the model as a whole will be much smaller 

(especially with a very small learning rate) and will not destroy 

the features of the earlier layers. 

 

 
Fig. 12.  Evaluate the model 

 

The evaluate function will return a tuple, where the first value 

is your loss, and the second value is your accuracy. The 

achieved accuracy is 99.89. 

5. Conclusion 

A new model for classifying fruits using convolutional neural 

networks is proposed in this paper. The model developed has 

an accuracy of 99.89 % on testing data. This result is obtained 

after training the data with 3 fruits and 6 categories with 10904 

images in the training data set and 2698 images in the testing 

data. This paper explores a fruits classification based on CNN 

Algorithm with transfer learning approach. This paper deals 

with various methods and algorithms used for fruit 

classification. CNN better performance to attain better fruit 

classification with the use of softmax activation function in 

output layer and adam optimizer. 

 

 
Fig. 12. 

 
Fig. 13. 

6. Future Scope 

Hopefully in future this process can spread to more varieties 

of dataset of fruits as well as vegetables. Also plan to implement 

some other CNN based models with different activation 

functions and approaches to compare the accuracy on the same 

dataset. Would also like to work on some more features for 

grading and classification, which can identify types of disease 

and/or texture structure of fruits. 
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