
International Journal of Research in Engineering, Science and Management

Volume 4, Issue 9, September 2021

https://www.ijresm.com | ISSN (Online): 2581-5792

*Corresponding author: goswamiarijit2017@gmail.com

15

Abstract: Algorithm Visualization is an online interactive

platform that displays algorithms from code. Learning the

algorithm is much easier by visualizing it. Algorithm Visualizer is

a web application written in React. It contains UI elements and

translates commands into visualizations. Algorithms are an

attractive use case for visualization. To make an algorithm

visualize, we do not simply measure the data in a chart; no primary

database. Instead, there are reasonable rules that govern behavior.

This may be why visualization of the algorithm is unusual, as

designers are trying to create novel forms for better

communication. This is a good reason to read them. The main

purpose of this is to ensure effective and reliable methods of

detecting various algorithms. Using this web application anyone

can learn algorithms quickly and easily. Such applications are

already available, but the efficiency of the available algorithm

visualizers is not achieved thoroughly. This newly developed

application proposes to take a step further and visualize all types

of algorithms along with a customized chat engine SDK that

enhances visual accuracy on a much larger scale.

Keywords: Algorithms, visualization environment, analysis of

complexities, web-based learning.

1. Introduction

This is a web application used to visualize algorithms. This

application is created using JavaScript, CSS, SCSS, ReactJS,

HTML5, Vercel, Firebase, Chat Engine XDK, nodejs and

Formik. [1] The user can access this website with the link

provided. First, there is the registration or login area. [2] When

the user opens it for the first time he must select the sign-up

option. Here he must provide a username, email id, password,

password confirmation. If they are already registered, then they

must log in and select an email, password, and verify the

password. Then enter the main page or home page. Here the

user can see his email address and the password provided by

firebase.

Here four buttons are provided. VISUAL ALGORITHMS,

ALGORITHMS, DISCUSSION, ANSWER. [3] By clicking on

VISUALIZE ALGORITHMS the user can view and understand

the functionality of certain algorithms. When a user goes to

ALGORITHMS they can see 72 complete algorithms. Filtering,

Searching, and Other Algorithms. [4] When he clicks on any of

them a button to learn more, details will be displayed on the

page. The DISCUSSION section will take the user to the login

page where they must provide a username and password

(password provided with firebase on the home page). [5] It will

then be included in the discussion group for hesitation to clear

where the developers will answer his or her questions regarding

this website. [6] In the feedback section, the user can write how

useful this website is or any idea for the development of this

website in the comments section. In mathematics and computer

science, an algorithm is a limited sequence of computer-

generated commands, commonly used on a computer, usually

to solve a problem category or to perform calculations.

[7] Algorithms remain obscure and are used as descriptions

of mathematical operations, data processing, automated

thinking, and other functions. [8] As an effective method, the

algorithm can be displayed within a limited amount of space

and time, and in a well-defined official language for calculating

the task. Starting from the initial state and initial installation

(perhaps empty), the commands define a computer calculation

that, when done, passes a limited number of well-defined

consecutive countries, eventually producing "output" and

ending in the end. Here we can see different types of algorithms

and their details. The DISCUSSION section will take the user

to the login page where they must provide a username and

password (password provided with firebase on the home page).

[9] The user will then be included in the discussion group for

doubt clearing where the developers will answer his or her

questions regarding this website. The conversation is essential

for any user queries. When developers guide the user properly,

it will be very helpful for the user to check the website. [10]

Website feedback information is obtained directly from website

users - through on-page surveys, response widgets, and other

strategies - to help organizations understand what people think

(and feel) about their websites and landing pages. This entire

web application makes it a good practice of visualization-based

algorithms study.

2. Background of the Work

Planning builds up the basic data structure in the

programming curriculum, only a small amount of research

focused on investigating student mental models and the

difficulty of arranging arrays. [11] According to a survey, loops

and topic layouts are two of the three main program topics for

novice students. Du Boulay reported student confusion between

the same array index and its cell; they have difficulty dealing

Web-Based Dynamic Algorithm Visualizer

Along with Chat Engine SDK for Neophytes

Arijit Goswami1*, Biswarup Bhattacharjee2, Rahul Debnath3, Ankita Sikder4

1,2,3,4Student, Department of Computer Science, University of Engineering and Management, Kolkata, India

A. Goswami et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 9, SEPTEMBER 2021 16

with arrangements that contain indices as planned. [12] An

unpublished authorship survey of Greek high schools, using a

sample of 102 students (K-12), confirmed similar

misconceptions and reading difficulties; most students had

erroneous or incomplete models of the concept of the same

members which led to erroneous assumptions and great

difficulty in solving simple algorithmic problems that required

the use of a data structure of the same members. [13] In general,

there are two main categories of recognition systems in CS

education: the recognition system and the algorithm recognition

systems. Program Visualization (PV) systems generate specific

presentations of program structures and program design

components, for example, Jeliot 3 is a well-known PV program

that visualizes Java programs; other modern programs, such as

Jype, Historic, and Online Python Tutor, Visualization

programs in Python. [14] However, the concept behind the

algorithm cannot be revealed simply by showing how the

flexibility values of the system change. They aim to cover this

need by visualizing abstract concepts and expressing the basic

concepts of the underlying algorithm, thus helping students to

create multiple mental models, link building hierarchies, and

creating problem-solving patterns to distinguish the level of

communication and visual assessment of learners (e.g. Both

conversion capabilities, input data and algorithm code, and

various visual representations). [15] The first reference to the

animation algorithm was a popular video titled 'Sorting Out

Sorting' presented by R. Baecker in 1981 at the SIGGRAPH

conference. This 30 min video demonstrates the functionality

and performance of nine filter algorithms, using animations and

audio comments. Since then, there have been a number of tools

being developed as a result of research projects in algorithm

visibility. [16] The most popular way to create algorithm

images is to specify algorithm code with script commands that

generate visibility. [17] The first language-based program was

developed by John Stasko and his colleagues and belongs to a

wide family of algorithm detection systems (Tango, Polka,

Samba, and JSamba). The animation contains a file containing

graphic commands corresponding to the key events of the

algorithm under sight. [18] One family of programs, such as

MatrixPro, Trakla2, and Ville, offers “Algorithm Simulation

Exercises”, in which the student has to manually perform a

given algorithm, usually by dragging elements into new or

targeted positions or by pressing buttons to create a specific

task. [19] Ville is a new tool for this family; supports multiple

programming languages including C ++ and Java. Its built-in

editor supports query design and tests that are displayed as pop-

up windows. [20] Another AV version of the novel is JHave

which helps AV developers easily create animated slideshows.

[21] Its specific feature is the ‘stop and think’ questions and

definitions that can be seen at any time during animation,

thereby promoting effective interaction with students and

algorithm perception. JHave includes a large collection of

algorithm recognition and has gained a great deal of interest in

education. The latest animation program algorithm is Alvis

Live! [22] It is a system development platform that supports the

development and interactive presentation of algorithm

recognition using the SALSA language. It includes features that

support storytelling. [23] A lot of research has been done to

investigate the educational value of algorithm detection

systems. Overall, the results showed that simple animation or

visualization algorithms had little effect on student learning,

due to the low level of student engagement. [24] Hundhausen,

Douglas, and Stasko conducted systematic tests on the

effectiveness of AV systems. Their 24 published research

metastudy, related to AV, concluded that a) the way students

use visibility is more important than their own perceptions, and

b) AV sites only work where students participate in the learning

process.

3. Implementation

The first goal of this project visualizes various sorting and

searching algorithms, and create a web application to visualize

these algorithms. [25] This visualization portion’s goal is to

create two types of visualization, first is the pathfinding

approach and second is sorting visualization approach, In this

pathfinding approach’s goal is to create simple javascript logic

to visualize searching algorithms like Dijkstra algorithm, A*

search algorithm, etc and sorting visualization’s goal is to

generate random arrays with random size and then create some

simple javascript logic to sort these arrays, as a result, we can

simply visualize sorting algorithms. This project contains three

single-page applications. These are nothing but three

functionalities of our main project. Another goal of this is to

create a backend database in firebase to store the user’s email

and password, after the store it will fetch the user id which will

be provided by firebase. After that pass this provided user-id as

password into react-chat-engine SDK, then we will create three

react single-page applications and host these applications

through netlify. The second goal of our project is that store and

show the details of many algorithms to learn easily, and the

details are the time complexity of algorithms, and their

recurrence relations, logical approach, etc. The third important

goal of our project is to create a chat application. By this

portion, users will discuss their doubts together. [26] The last

portion’s goal is basically to create collection contacts,

feedbacks in the firestore database which is used as the backend

and another goal of this portion is to create a frontend to send

feedbacks and contact us portions using bootstrap and

sass(syntactically awesome style sheets). After creating a total

of three single-page applications and the visualization portion

then the next goal is to merge all functionalities and create a

multi-page responsive application using vercel development,

create a home page of our project after connecting it to the

firebase login signup page. This is the overall goal of the

project.

At first, we create a project in firebase then this project is set

to a web-based application. Basically, firebase is a Backend-as-

a-Service (Baas). [27] It provides a variety of tools and services

to develop applications. It is built on Google's infrastructure.

Firebase is classified as a NoSQL database system, which stores

data in documents such as JSON. In our project, we create a

custom email password authentication system in firebase. After

that we use react library in node js to create login and signup

page, to create these forms pages we use the Formik library in

A. Goswami et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 9, SEPTEMBER 2021 17

react-js. React makes applications fast, scalable, and simple.

After that, we create the main page of our project On this page

we use the CSS blob effect using SVG. It literally means

Scalable Vector Graphics. Basically, we work within Adobe

Illustrator. After creating the main page, we added four

functionalities,1st is the visualization portion here we create

two subparts. The first is the pathfinder approach and the

second is the sorting visualizer approach.

In the pathfinding approach, the authors implement some

javascript logic to visualize searching algorithms. Here we

visualize seven popular searching algorithms - First Dijkstra's

Algorithm (weighted): the father of pathfinding algorithms

,guarantees the shortest path, second A* Search (weighted):

arguably the best pathfinding algorithm, uses heuristics to

guarantee the shortest path much faster than Dijkstra's

Algorithm, third Greedy Best-first Search (weighted): a faster,

more heuristic-heavy version of A*, fourth one does not

guarantee the shortest path, fifth is Swarm Algorithm

(weighted) : a mixture of Dijkstra's Algorithm and A*, does not

guarantee the shortest-path, sixth is Convergent Swarm

Algorithm (weighted): the faster, more heuristic-heavy version

of Swarm; does not guarantee the shortest path, seventh is

Bidirectional Swarm Algorithm (weighted): Swarm from both

sides; does not guarantee the shortest path, eighth is Breadth-

first Search (unweighted): a great algorithm; guarantees the

shortest path, ninth is Depthfirst Search (unweighted): a very

bad algorithm for pathfinding; does not guarantee the shortest

path.

In addition to the pathfinding algorithms listed above, the

authors have used the Recursive Division Maze Generation

algorithm. Swarm algorithm is actually a combination of

Dijkstra's Algorithm and A* Search; precisely, while switching

to a pointed node such as A*, it still looks at a few neighboring

locations around the original node like Dijkstra. The algorithm

distinguishes itself from A* by its use of heuristics: it constantly

updates the distance of nodes from the first node while taking

into account its estimated distance from the specified node. [28]

This effectively "measures" the difference in the total distance

between the nodes closest to the first node and the nodes closest

to the specified node, resulting in a Swarm Algorithm-like

triangle formation. We named the algorithm "Swarm" because

one of its applications can be seen in a video game where the

character has to track the most important boss (target node), all

the while keeping track of neighboring enemies who may be

crawling nearby. The second part of the first operation is part

of the visualization process here and we used the JavaScript

concept visualization to filter the algorithms. [29] The filtering

algorithm is used to rearrange a given list or list items

depending on the comparison operator in the properties. The

comparator operator is used to determine a new order of items

in the appropriate data structure. This project contains three

one-page programs. These are nothing but three operations of

our great project. We create a backend database in the firebase

to store the user's email and password, after saving, it will

download the user id that will be provided by the firebase. After

that pass, this is provided with a user id and password to the

reaction-chat SDK engine. Chat Engine is an API that makes it

easy to build chat services. Building a conversation from

scratch takes a lot of time, code, and is expensive. It is better to

use the product than to write it from scratch. We've made it easy

to create a conversational concept in minutes. We have created

three single-page applications and handle these applications

using netlify. [30] Netlify is a web development platform that

expands productivity. By integrating modern web-based

features, from local development to advanced comprehension,

Netlify enables 10x faster access to more efficient, secure, and

awesome websites and apps. At the back of this store, it shows

the details of many easy-to-read algorithms, and the details are

the time-complexity of the algorithms, as well as their repetitive

relationships, logical approach, etc. To perform these one-page

programs we use the reaction-router-dom.

Routing is a process in which a user is redirected to different

pages depending on their action or request. [31] ReactJS Router

is mainly used to develop Single Page Web Applications. React

Router is used to define multiple routes in the app. When a user

types a specific URL in a browser, and if this URL path matches

any 'path' within the router file, the user will be redirected to

that specific route. Provides sync URL in browser with details

to be displayed on the web page. Maintains the normal design

and behavior of the app and is mainly used to develop single-

page web applications. After that, we created a chat app using

the pre-discussed response engine. At this stage, users will

discuss their doubts together. To do this part of the conversation

we use [32] Axios to generate applications in the reaction

application. Axios is an HTTP client based on the promise of

the browser and Node. js. It can be used in plain JavaScript or

in a library such as Vue or React. [33] Consuming REST APIs

in React applications can be done in a variety of ways, but we

have discussed how to consume REST APIs using the two most

popular methods known as Axios (HTTP-based client) and

Fetch API (built-in browser) web API).

Axios helps us make HTTP requests. After receiving the

data, we add it to the state, so it is ready to use by our system.

Finally, we create a collection of contacts, which takes back to

the firestore database used as a backend and another purpose of

this section is to re-create the frontend for sending feedback and

contact us sections using bootstrap and sass (awesome style

sheets). Firestore allows for complex ACID transactions against

the document data. This provides more flexibility in the way we

build our data. Includes HTML and CSS templates design for

typography, forms, buttons, tables, navigation, modals, image

carousels, etc. Here we use sass to create a frontend, Sass

(representing Syntactically awesome style sheets) is a CSS

extension that enables to use of things like dynamics, integrated

rules, in-line import, and more. It also helps to keep things

organized and allows us to create style sheets quickly. [34] Sass

is compatible with all types of CSS. After creating a total of

three one-and-a-half view applications and combine all

functionality and create a multi-page responsive program using

vercel development. We start by deploying zero configuration

in our global boundary network. Here the main solution to the

concept is firebase auth connected to respond to SDK chat

engine vercel. Here we set firebase project settings and project

private key designed for the react chat-engine into vercel

A. Goswami et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 9, SEPTEMBER 2021 18

environment’s variables. After deploying this project using

vercel deploy. Below in Table 1, we can see an analysis of the

time complexity of the algorithms reflected in the initial

implementation of our project.

4. Experimental Setup

The architecture of the model is shown in figure 1.

Fig. 1. Architecture of the model

5. Time Complexity Analysis

Table 1

Time complexity analysis of various algorithms

Algorithms Time Complexities

DIJKSTRA’S ALGORITHM O(V^2)

BFS ALGORITHM O(V+E)

DFS ALGORITHM O(V+E)

A * SEARCH ALGORITHM O(E)

BUBBLE SORT ALGORITHM O(n^2)

SELECTION SORT ALGORITHM O(n^2)

INSERTION SORT ALGORITHM O(n)

MERGE SORT O(nlogn)

QUICK SORT O(nlogn)

HEAP SORT O(nlogn)

6. Future Scope

1. Students while working on a course have to solve

assignments. For solving exercises and finishing

assignments students can use this algorithm visualizer.

2. Students like discussion-based study through an interactive

platform. So that they will use it.

3. Without searching about algorithms students will get

enough information about algorithms. It will save them

time.

4. In the age of online study, it is a great opportunity for

students of learning algorithms by visualizing the working

flow. The visualization-based study is a trend of present

days and the way is very efficient for understanding.

7. Conclusion

Algorithm Visualizer is an interactive online platform that

visualizes algorithms as per the user’s choice. It has been

created using JavaScript, CSS, SCSS, ReactJS, HTML5,

Vercel, Firebase, Chat Engine XDK, nodejs, and Formik. Users

can approach this website through a provided link. First of all,

he has a sign-up or login page. If the user is opening it for the

first time he has to select the sign-up option. Here he has to give

a username, email id, password, verify the password. If he has

already signed up, then he has to go to the login option, and then

he has to give an email, password, confirm password. Then we

have to enter the main page or home page. Here user can see

your email id and a firebase-provided password.

Here four buttons are given. VISUALIZE ALGORITHMS,

ALGORITHMS, DISCUSSION, FEEDBACK. By clicking on

VISUALIZE ALGORITHMS users can watch and understand

the working of some specific algorithms. If the user goes to

ALGORITHMS he can see a total of 72 algorithms. Sorting,

Searching, and Others algorithms. If he clicks any of them in

learn more button, then their details will be shown on a page.

The DISCUSSION part will take the user to a login page where

he has to give a username and password (firebase-provided

password on the home page). Then he will be added to a

discussion group for doubt clearing where the developers will

answer his questions regarding this website. In the feedback,

portion the user can write about how much this website is useful

or any idea for improvement in this website in the comment

section.

Applications of Algorithm Visualizer are various like the

following:

1. Learning an algorithm gets much easier with visualizing

it. Algorithm Visualizer lets users visualize different types

of algorithms. User can understand the algorithms and

their working flow easily. It contributes three types of

algorithms. They are sorting algorithms, searching

algorithms, and others algorithms.

2. This web application has a descriptive portion of 72

algorithms which is very useful for students of Computer

Science and Mathematics subjects. Here time complexity,

space complexity, definition, and other information are

gathered for students so that they don’t have to search all

information in google spending a lot of time.

3. Students or anyone who wants to learn algorithm they can

interact with the developers or any other user for any

query, related to this web app. This idea of interaction and

a safe chatting area provides users with a nice way of

learning.

4. This web app can be useful for students, interns, office

workers, or anyone who want to learn algorithms and their

working flow. This online interactive platform base study

is trending these days.

References

[1] McGettrick A, Boyle R, Ibbett R, Lloyd J, Lovegrove L, Mander K. Grand

challenges in computing education – A summary. The Computer Journal

2005;48(1):42-48.
[2] Rößling G. The Animal algorithm animation tool. 5th Annual

SIGCSE/SGCUE Conference on Innovation and Technology in

Computer Science Education, ITiCSE’00. Helsinki, Finland; 2000. pp.
37-40.

[3] Pierson W, Rodger S. Web-based animation of data structures using

JAWAA. 29th SIGCSE Technical Symposium on Computer Science
Education. 1998. pp. 267-271.

[4] Sorva J, Sirkiä T. UUhistle: a software tool for visual program simulation.

In: Proceedings of the 10th Koli Calling International Conference on
Computing Education Research (Koli Calling '10). New York: ACM

Press; 2010. pp. 49-54.

[5] Fouh E, Akbar M, Shaffer C. The role of visualization in computer science
education. Computers in the Schools 2012;29:95-117.

[6] Baecker R. Sorting out Sorting. Narrated colour videotape, 30 minutes,

Presented at ACM SIGGRAPH’81, 1981.

A. Goswami et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 9, SEPTEMBER 2021 19

[7] Stasko JT. Using student-built algorithm animations as learning aids, In:

28th SIGCSE Technical Symposium on Computer Science Education;
1997. pp. 25-29.

[8] Karavirta V, Korhonen A, Malmi L, Stålnacke K. MatrixPro: A tool for

on-the-fly demonstration of data structures and algorithms. In:
Proceedings of the Third Program Visualization Workshop; 2004. pp. 26-

33.

[9] Hundhausen D, Brown J. What you see is what you code: A 'live'
algorithm development and visualization environment for novice learners.

Journal of Visual Languages and Computing 2007;18(1):22-47.

[10] AlgoViz.org Bibliography. Annotated bibliography of AV literature.
http://algoviz.org/biblio, 2011.

[11] Ma L, Ferguson J, Roper M, Wood M. Investigating and improving the

models of programming concepts held by novice programmers. Computer
Science Education 2011;21(1):57-80.

[12] Guo JP. Online Python Tutor: Embeddable Web-Based Program

Visualization for CS Education. In: Proceedings of the 44th SIGCSE
Technical Symposium on Computer Science Education. New York:

ACM. 2012. pp. 579-584.

[13] Vrachnos E, Jimoyiannis A. Dave: A Dynamic Algorithm Visualization
Environment for novice learners. 8th IEEE International Conference on

Advanced Learning Technologies 2008. pp. 319-323.

[14] Garner S, Haden P, Robins A. My program is correct but it doesn’t run: a
preliminary investigation of novice programmer’s problems. In: ACE’05:

Proceedings of the 7th Australasian conference on Computing education.

2005. pp. 173-180.
[15] Du Boulay B. Some difficulties of learning to program, In: Soloway E,

Spohrer JC, editors. Studying the Novice Programmer, Hillsdale, NJ:
Lawrence Erlbaum Associates; 1986. pp. 238-299.

[16] Dale NB. Most difficult topics in CS1: results of an online survey of

educators. SIGCSE Bull. 2006;38(2):49-53.
[17] Robins A, Rountree J, Rountree N. Learning and teaching programming:

A review and discussion, Computer Science Education 2003;13(2):137-

172.
[18] Soloway E., Spohrer, JC. Studying the novice programmer. NJ: Lawrence

Erlbaum; 1989.

[19] Jimoyiannis A. Using SOLO taxonomy to explore students’ mental
models of the programming variable and the assignment statement.

Themes in Science and Technology Education 2011;4(2):53-74.

[20] Danielsiek H. Detecting and understanding student’s misconceptions

related to algorithms and data structures. Proceedings of the SIGCSE

2012 Technical Symposium on Computer Science Education. Raleigh,

North Carolina: ACM Press; 2012. pp. 197-201.
[21] Brown, M., Najork, M., and Raisamo, R. 1997. A java-based

implementation of collaborative active textbooks. In Proceedings of the

IEEE Symposium on Visual Languages (VL’97), pp. 372-379.

[22] Galles, D. 2006. Data structure visualization.

http://www.cs.usfca.edu/galles/visualization/.
[23] Jarc, D. J., Feldman, M. B., and Heller, R. S. 2000. Assessing the benefits

of interactive prediction using Web-based algorithm animation

courseware. In Proceedings of the 31st SIGCSE Technical Symposium on
Computer Science Education (SIGCSE’00), pp. 377-381.

[24] Lawrence, A. W., Stasko, J., and Badre, A. 1994. Empirically evaluating

the use of animations to teach algorithms. In Proceedings of the IEEE
Symposium on Visual Languages (VL’94), pp. 48-54.

[25] Naps, T., Rössling, G., Almstrum, V., Dann, W., Fleischer, R.,

Hundhausen, C., Korhonen, A., Malmi, L., McNally, M., Rodger, S., and
Ángel Velázquez-Iturbide, J. 2002. Exploring the role of visualization and

engagement in computer science education. In Proceedings of the

Working Group Reports from ITiCSE on Innovation and Technology in
Computer Science Education (ITiCSE-WGR’02), pp. 131-152.

[26] Rössling, G., Naps, T., Hall, M., Karavirta, V., Kerren, A., Leska, C.,

Moreno, A., Oechsle, R., Rodger, S., Urquiza-Fuentes, J., and Ángel
Velázquez-Iturbide, J. 2006. Merging interactive visualizations with

hypertextbooks and course management. SIGCSE Bull, vol. 38, no. 4, pp.

166-181.
[27] Rössling, G., Schüer, M., and Freisleben, B. 2000. The animal algorithm

animation tool. In Proceedings of the 5th Annual SIGCSE/SIGCUE

ITiCSE Conference on Innovation and Technology in Computer Science
Education (ITiCSE’00), pp. 37-40.

[28] Grissom, S., McNally, M., and Naps, T. 2003. Algorithm visualization in

CS education: Comparing levels of student engagement. In Proceedings
of the ACM Symposium on Software Visualization (SoftVis’03), pp. 87-

94.
[29] Hundhausen, C. and Douglas, S. 2000. Using visualizations to learn

algorithms: Should students construct their own, or view an expert’s? In

Proceedings of the IEEE Symposium on Visual Languages (VL’00), pp.
21-28.

[30] Hope College. 2001. Complete collection of algorithm visualizations.

http://www.cs.hope.edu/~dershem/ccaa/ccaa.
[31] Brown, M. 1992. An introduction to Zeus. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems (CHI’92), pp. 663-

664.
[32] Crescenzi, P., Gambosi, G., and Grossi, R. 2006. Strutture di Dati e

Algoritmi. Pearson Education Addison-Wesley.

[33] Byrne, M. D., Catrambone, R., and Stasko, J. T. 1996. Do algorithm

animations aid learning? Tech. rep. GIT-GVU-96-18, Georgia Institute of

Technology.

[34] Diehl, S. 2007. Software Visualization: Visualizing the Structure,
Behavior, and Evolution of Software. Springer.

