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Abstract: Rapid, standardized, and reliable prognoses can help 

physicians assess and administer their patients' most desirable 

treatment plans. Machine learning models can aid the physician 

decision-making process and provide a less biased estimate of 

patient status, which is very useful in determining transplant 

eligibility. We created models using data from longitudinal studies 

mapping patient prognosis over ten years. These models served to 

answer two questions: (1) can survival time be precisely foretold 

using easily obtainable biological indicators (2) can we predict 

patient disease progression (status) using these indicators. We 

found that using features such as albumin, bilirubin, edema, and 

ascites, a stepwise fit model could significantly predict survival 

time with a correlation coefficient of 0.66. We also found that 

disease status could be predicted at a 76% accuracy using logistic 

regression, random forest, and support vector machine (SVM) 

methods. The random forest model performed best at predicting 

survival status, and our three classification models prioritized 

similar features as the linear regression and each other. These top 

features align with current prognostics, which use variations of 

bilirubin, alkaline phosphatase, stage, and albumin in their 

predictive models, therefore supporting our initial hypothesis. The 

fact that there is only a single point of data in one study limits it. 

More preliminary testing and data collection should be done for 

future directions so that this model can be used clinically. 
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1. Introduction 

Primary biliary cholangitis, earlier known as primary biliary 

cirrhosis, is a chronic disease in which the bile ducts in the liver 

are degraded [1]. It is a form of cirrhosis, a late stage of scarring 

in the liver caused by various liver diseases and disrupts liver 

function [2]. In 2018, roughly 4.5 million were diagnosed with 

liver disease, and roughly 41,700 people died from chronic liver 

diseases and cirrhosis in the United States alone [3].  

We scrutinized a dataset from a research article published in 

1989 titled “Prognosis in primary biliary cirrhosis: Model for 

decision making” to forecast the likelihood of survival for 

patients with primary biliary cirrhosis measurements that could 

be obtained through inexpensive, non-invasive methods.4 The 

authors began collecting data on patients at the start of the study 

in 1974 and continued collecting data from new patients for ten  

 

years. The data was collected on each patient at their 

appearance into the study, and their time of survival was 

updated throughout the study. At the time of the study, 

clinicians relied upon invasive liver biopsies to develop an 

accurate prognosis for these patients. Consequently, the 

researchers sought to develop a regression model based on non-

invasive parameters that could provide an accurate prognosis 

and help clinicians determine whether the patient should 

receive a liver transplant. This model, which was built on many 

observations, could help clinicians generate a more 

standardized, accurate prognosis that they would provide based 

on their own experience. 

The authors of the study developed their model using 

stepwise regression. They started with a set of 45 features and 

tapered down their model to 5 critical features, that is bilirubin 

(log), albumin (log), age, prothrombin time (log), and edema 

(and therapy) to predict a risk score that could be used to 

determine the probability of survival after t years. The dataset 

that was available online contained 312 observations by 19 

features (Table A1). Each patient is represented by one 

observation. 

It was unclear what the original authors used for their 

dependent or response variable when running their stepwise 

regression to develop their model. We believe that they used 

risk scores previously obtained or calculated from an existing 

model, but we did not have access to that data, so we decided 

to use an alternative dependent variable for building our 

models. 

Our objective was to develop various models to predict the 

survival time of cirrhosis patients and the survival status - 

whether a patient survived or not throughout the study. The 

survival time is the time from the start of the study to when the 

patient either died, received a liver transplant, or the study 

ended and is in units of days. The survival status is labeled as 0 

for censored, 1 for transplant, and 2 for death, so we grouped 

censored and transplants together into the survival group. 

Additionally, we sought to determine what features are most 

important in determining the prognosis of primary biliary 

cholangitis for a given patient. Today the increased bilirubin 
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and alkaline phosphatase levels are associated with worse 

outcomes. Also, cirrhosis, indicated by histologic stage 4, is 

associated with a worse prognosis. Furthermore, one model 

called the GLOBE score predictive model uses serum bilirubin, 

albumin, alkaline phosphatase, platelet count after one year of 

UDCA treatment, and age at the start of therapy. The UK-PBC 

score model includes serum alkaline phosphatase, 

aminotransferases, and bilirubin after 12 months of UDCA 

therapy, as well as baseline albumin and platelet count [7]. 

Therefore, we hypothesized that these changes mentioned 

above/indicators would more strongly correlate with a 

decreased survival time and occurrence of death. 

2. Methods 

We obtained the data from a GitHub repository and found 

documentation on the dataset from the R Documentation site 

[5], [6]. The GitHub file originally contained 418 observations 

with 19 features. Still, we took the first 312 observations as 

these contained data for all features (The additional 

observations with missing features corresponded to an 

independent test set used in the original study to validate their 

model). Therefore, the dataset we used for this paper, located in 

the file cirrhosis.csv, contains 312 observations by 19 features 

(Table A1). 

We made separate models to predict survival time and 

survival status independently. We used various unsupervised 

learning techniques, namely principal component analysis 

(PCA) and k- means clustering, to explore any grouping 

patterns in our data for the survival status. Then, we created 

various regression and classification models using stepwise 

regression, linear regression, lasso, random forest, and a 

support vector machine to predict survival time and survival 

status, respectively. We use an alpha level of 0.05 to evaluate 

statistical significance regarding correlation coefficients, 

feature selection, and independent two-sample t-tests. This 

paper highlights the important findings and results from our 

data analysis. All of our code and remaining results can be 

found in the file finalProject.mlx. We also ran our entire 

analysis again after standardizing the data using z scores and 

compared these results to our initial results. 

3. Results 

A. Summary Statistics 

We gathered data such as means, medians, standard 

deviations, and so on. We used histograms, box plots, 

scatterplots, and correlation matrices to see if there were any 

evident links between different features, notably for time and 

status. After missing values were removed, the data comprised 

276 observations. We added three variables, log(albumin), 

log(bilirubin), and log (prothrombin time), because these were 

variables used by the researchers in their risk score model. 

B. Initial Exploration Plots 

We split each feature into two groups for the boxplots, low 

and high-risk, corresponding to high and low survivability, 

respectively. We calculated risk scores for every observation 

using the equation provided in the cirrhosis paper.4 We used the 

median risk score, 4.68, as a cutoff for low and high risk. Figure 

1L saw those variables such as age, albumin, bili, stage, status, 

and time were all different between low risk and high risk, and 

some of these differences matched what was expected. For 

example, the high-risk group in stage had a median value of 4, 

and bilirubin increased for the high-risk group, consistent with 

current prognostics. For the scatter plots (log(time) scatterplot 

seen in Figure 1R), we plotted each variable versus time and 

then again versus log(time). Most of these scatter plots did not 

yield any particular insights except for the following: it seemed 

that albumin had a linear relationship with time and low 

alkaline phosphatase (alkphos), low bilirubin, low cholesterol, 

and low prothrombin time were all highly clustered with larger 

log(time) values. This may suggest that when these features are 

lower, the patient has a longer survival time. We might expect 

to see some of these features selected when predicting time 

using stepwise regression, lasso, and random forest. 

 

 

 
Fig. 1.  On the top, T, are boxplots of the different features grouped by risk 

score. On the bottom, B, are scatter plots of the log(time) vs the corresponding 

feature 

C. Statistical Analysis 

We calculated pairwise Spearman and Pearson's correlation 

coefficients for the data containing original time values and 

log(time) values. We discovered that the absolute correlation 

values between features and time were best for log(time) when 

looking at Pearson's coefficients. Thus, we opted to utilize 

log(time) for our supervised learning models' survival time 

response variable. Edema, log(bili), ascites, bilirubin, 

log(albumin), albumin, status, copper, stage, and log(albumin) 

were the top 10 features with the best absolute Pearson's 
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coefficients for log(time) for Pearson's (from best to worst) 

(prothrombin time). Significant correlations of larger than 0.3 

were found in all of them. Edema had a Pearson correlation of 

0.5402 and a p-value of less than 1e-5. We later used these 

features to fit our linear regression model. 

D. Principal Component Analysis 

We ran PCA on the complete dataset after removing the 

status feature better to understand the correlations between all 

the variables and status and generated a scatter plot of the PC1 

scores vs. PC2 scores, with status as the grouping variable. Each 

of the variables explains the percentages of the total variance. 

PC1 had 27.07 percent, and PC2 had 11.17 percent, 

respectively. As shown in Figure 2L, PC1 successfully divided 

the data into two distinct groups. As a result, we sorted the 

features by PC1 coefficients and discovered that log(bilirubin), 

bilirubin, edema, ascites, and log(bilirubin) were the top five 

weighted features (prothrombin time). We used box plots to 

separate the groups based on survival status, and two sample 

independent t-tests were used to compare the two groups. They 

all showed significant differences (p 0.05), and many features 

grew in value between the afflicted and the survivors. 

 

 
Fig. 2.  Left, PCA of cirrhosis data with status removed. The data is 

grouped nicely by PC1. Right, PCA contribution sorted by PC1 

 

 
Fig. 3.  Box plots of most important features identified by PC1 grouped by 

survival status. The two groups for each feature are significantly different as 

shown in the table below. For every feature except for ascites, the feature 

value increases for the group that did not survive 

 
Table 1 

Features P values 

'logbil' 7.43e-18 

'bili' 3.58e-13 

'edema' 1.54e-08 

'ascites' 3.05e-07 

'logpro' 3.81e-12 

 

 

E. K-means 

K-means was also applied to estimate cluster sizes of 

K=2:10. With a silhouette score of 0.9274, we learned that K=2 

was the best cluster size. The silhouette plot, on the other hand, 

revealed that the features were divided quite disproportionately. 

We used the different cluster indexes to group the status 

variables and observed no discernible difference between the 

surviving and deceased groups. 

Overall, we assumed that the stepwise regression, lasso, and 

random forest models would prioritize features that 

demonstrated some association with survival time and status, 

whether through local clustering, linear correlation, or PCA. 

F. Supervised Learning 

1) Predicting Survival Time 

We developed six distinct models, each based on a different 

sample of data. The response variable in all of the models is 

log(time). Using the following data sets, we created three 

stepwise regression models: 

1. Entire feature set 

2. A subset of 12 noninvasive variables 

3. Subset of 12 noninvasive variables with log values 

substituted for albumin, bili, & protime 

We computed pairwise Pearson's correlation coefficients to 

choose ten features for linear regression, as earlier described in 

Background - Statistical analysis. We used the full feature set 

for lasso and random forest. 

We used 5-fold cross-validation to verify each model. The 

average Pearson's coefficient, Spearman's coefficient, mean 

absolute error, and the number of coefficients (features) 

employed by the model were determined (Table A2, Figure 3). 

According to the average Pearson's correlation coefficient, 

lasso outperformed random forest. 

 

 
Fig. 3.  Graphical summary of Pearson’s R and the number of coefficients 

(features) used for each model 

 

2) Predicting Survival Status 

To predict survival status, we developed three models: a 

logistic regression model, a random forest classification model, 

and a support vector machine for binary classification. We 

eliminated the time feature from the data and ran 5-fold cross-

validation once more. With an average Pearson's correlation 

coefficient of 0.54159 and an accuracy of 0.77896, we 

discovered that the random forest model performed the best. On 

the other hand, the logistic regression model fared poorly, with 

a Pearson's correlation coefficient of 0.47797 and an accuracy 

of 0.75013. (Table A3). Figure 4 shows the average 
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classifications from all three models as confusion matrices. 

 

 

 

 
Fig. 4.  Average Confusion Matrices for Random Forest and Logistic 

Regression 

 

3) Standardizing Data 

We used z scores to normalize our data and reran all of our 

unsupervised and supervised studies. We discovered that 

supervised models performed worse in general than 

unsupervised models. Thus, we present our preliminary 

findings here. A separate file called finalProjectZscore.mlx 

contains all of the z score data results. 

4. Discussion 

A. Survival Time Models and Feature Selection 

Table A2 and Figure 3 show that the stepwise subset log 

performed best in predicting survival time. Among the models 

illustrated in Figure 3, it likewise had the fewest characteristics 

(5.2). The second stepwise regression model (Stepwise subset) 

had the smallest number of features (5.0) and the lowest 

Pearson's R (0.617), but it performed similarly to the other 

models. A model with fewer characteristics is preferable since 

it reduces overfitting and, from a clinical standpoint, requires 

fewer patient data to generate a prognosis, saving time and 

resources for physicians. 

Albumin, bilirubin, edema, ascites, copper, stage, and 

alkaline phosphatase consistently surfaced among the top 

characteristics in all regression models except random forest 

(not necessarily in the order listed). (These findings may be 

found in Task 5 - Timed Supervised Learning.) This is 

consistent with current prognostics, which incorporate 

bilirubin, alkaline phosphatase, stage, and albumin changes into 

their models, confirming our initial idea. These characteristics 

also match the Pearson's correlation coefficients for log(time) 

in order (see Task 3 - Statistical Analysis). 

B. Survival Status Models and Feature Selection 

Overall, the models performed relatively similarly; however, 

based on Table A3, the random forest model did the best, even 

though this is not statistically significant. Similar traits were 

ranked as having the most value in all three classification 

models. Bilirubin, prothrombin time (and log (prothrombin 

time)), albumin, copper, and alkaline phosphatase obtained the 

greatest significance values in a random forest, according to the 

out-of-bag feature importance graphs. This was identical to the 

top five features chosen by the logistic regression model, which 

included copper, alkaline phosphatase, and log (prothrombin 

time). In contrast to logistic regression, which prioritized age 

and aspartate aminotransferase in separate validation runs, 

logistic regression prioritized age and aspartate 

aminotransferase consistently. Bilirubin and log (prothrombin 

time) were among the top five features chosen by PCA from 

among the above features. These characteristics are in line with 

current physiological indicators and prognostic models. 

Bilirubin, for example, appears to be particularly essential in 

predicting survival status, which is consistent with what has 

been shown in recent laboratory research studies. According to 

one report, bilirubin levels rise as the disease advances and are 

notably high in patients who have evident clinical symptoms.8 

5. Conclusions and Future Scope 

The study equaled a ten-year longitudinal study, but there is 

only one data point per patient in the dataset. More data points 

could have strengthened our model’s ability to add risk scores 

and disease status with this simplified data analysis. Taking 

measurements more consistently throughout the study could 

have made for a more robust model capable of predicting 

changes over time. The other limitation is the time variable 

itself. It is defined as “days between registration and earliest of 

death, liver transplantation and July 1986,” this means that all 

patients that survived past July 1986 were assumed to have died 

on that date, which could have negatively affected our model’s 

predictive abilities. 

We ran a wide range of tests on this dataset in terms of data 

analysis. The models are severely limited by the data supplied, 

which is one of the most important takeaways. All of the models 

we put to the test functioned admirably. Rather than testing all 

of the different algorithms to see which one performs best, the 

model should be chosen based on the prediction and the 

available explanatory variables. Data that is well-formatted and 

includes many observations is crucial in developing powerful 

predictive models for research like these. We had a hard time 
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locating biological datasets that would allow us to build the 

machine learning models we mentioned. Future directions of 

this project would be to gather more data and train/test these 

models on larger populations to see how they fare. 
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Appendix 
 

Table A1 

A summary of the variables in the raw data with brief descriptions, units, or binary classification for categorical variables, and min, median, and max values 

Var Description Code Min Median Max 

age age years 26.278 49.71 78.439 

albumin albumin gm/dl 1.96 3.545 4.4 

alkphos alkaline phosphatase U/liter 289 1277.5 13862 

ascites ascites 0 = no 

1 = yes 
0 0 1 

bili serum bilirubin mg/dl 0.3 1.4 28 

chol serum cholesterol mg/dl 120 310 1775 

 

 

edema 

 

 

edema treatment 

0 = no edema 

0.5 = untreated or successfully treated  

1 = edema despite diuretic therapy 

 

 

0 

 

 

0 

 

 

1 

hepato hepatomegaly 0 = no 
1 = yes 

0 1 1 

 

time 

 

time 

days between registration and earliest of death, liver transplantation and 

July 1986 

 

41 

 

1788 

 

4556 

platelet platelets count per mm^3 
blood/1000 

62 257 563 

protime prothrombin time seconds 9 10.6 17.1 

sex sex 0 = male 

1 = female 
0 1 1 

 

ast 

aspartate aminotransferase, 

once called SGOT 

 

U/ml 

 

28.38 

 

116.62 

 

457.25 

spiders spiders 0 = no 
1 = yes 

0 0 1 

stage stage 1,2,3,4 1 3 4 

 

status 

 

censoring 

0 = censored 

1 = transplant 
2 = death 

 

0 

 

0 

 

1 

trt treatment 1 = D-penicillamine 

2 = placebo 
1 2 2 

trig triglycerides mg/dl 33 108 598 

copper urine copper micrograms/day 4 74 588 

 
Table A2 

Overview of the supervised learning models by averaging the cross-validation results 

Evaluation Metrics (Average) Stepwise Full Stepwise Subset Stepwise Subset Log Linear Fit Lm Lasso Random Forest 

Pearson’s Correlation 0.6467 0.617 0.6588 0.6305 0.647 0.6488 

Rank Correlation 0.5632 0.5578 0.5627 0.5259 0.5549 0.5747 

Mean Absolute Error 0.4638 0.4835 0.4637 0.4744 0.4685 0.4551 

Number of Coefficients 6 5 5.2 10 11.4 NA 

 
Table A3 

Logistic Regression versus Random Forest for predicting status 

 Logistic Random Forest Support Vector Machine 

Pearson’s Correlation 0.47797 0.54159 0.4832 

Mean Absolute Error 0.24987 0.22104 0.24273 

Accuracy 0.75013 0.77896 0.75727 

 


