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Abstract: The Internet of Things (IoT) is used widely in health 

care, manufacturing, industry, smart homes, and smart cities, 

among other areas. The data is collected in the IoT environment 

by placing the sensors in a structured way in a specific area. It 

collects data in accordance with the defined service for devices of 

IoT. For optimal handling of massive data in an IoT environment, 

the study work provided a new processing information in IoT 

centered factory system of monitoring. Data management is a 

critical and necessary activity in IoT systems, and present 

solutions of big data-centered are sufficient to satisfy every 

requirement. In the IoT Big data context, it's critical to increase 

data handling performance because most systems are solely 

designed for real-time data collecting. The proposed strategy 

utilizes Hadoop and Apache Kafka to meet the need for real-time 

data collection as well as offline processing. In comparison to the 

clustering model of traditional hierarchical and the neural 

network of back propagation model, the approach proposed 

performs well in data management and information extraction. 

 

Keywords: Information processing, Internet of Things, 

manufacturing firms, monitoring system, sensor. 

1. Introduction 

Industry 4.0, or breakthrough digital technologies usage, is 

gradually improving product quality, worker safety, defect 

prediction, and energy utilization and production efficiency 

(Zhou, Liu & Zhou, 2015; El-Hamdi, Abouabdellah & Oudani, 

2019; Chen et. al. 2017). Because they enable leaner and more 

efficient production, concepts of Industry 4.0 are expected to 

grow in the next five years by 20% in industrial sectors (Shrouf, 

Ordieres & Miragliotta, 2014; Wan, Cai & Zhou, 2015). In this 

context, many manufacturers are concerned with accelerating 

the integration and usage of secure, dependable artificial 

intelligence (AI) (European Cyber Security Organisation, 

2018). AI-based manufacturing can improve business key 

performance indicators (KPIs) of manufacturing processes by 

combining industrial big data heterogeneous analysis, 

federation, and information modeling (Xu & Hua, 2017; Wan, 

Yang, Wang & Hua, 2018). In this context, connecting AI-

based manufacturing processes to already deployed wireless 

networks is a tough study subject, especially when core 

processing occurs outside of industrial premises (Varghese &  

 

Tandur, 2014; Trakadas et. al. 2019). 

Most techniques of AI, on the other hand, are centered on 

models of mathematics that are hard for the average person to 

understand; as a result, most individuals see technology of AI-

based as a black box that they ultimately grow to trust 

established on their own private experiences. Implementing 

human-centric AI (HAI) in systems of internet of things (IoT), 

such that systems of IoT cannot learn only from users 

nonetheless likewise offer easy explanations for estimations or 

judgments, is a new research topic (Garca-Magario, 

Muttukrishnan, & Lloret, 2019). The internet industrial of 

things (IIoT) is a network physical of equipment, items, or 

objects (with technology embedded) that are utilized in an 

industrial setting for remote and sensing control, allowing for 

deeper integration between the physical and cyber worlds 

(Moura, Ceotto, Gonzalez & Toledo, 2018). In the era of fifth-

generation (5G), providing high-performance, dependable, and 

efficient applications must be integrated with taking advantage 

of 5G network abilities. It is necessary to make the most use of 

available resources while adhering to tight Quality of Service 

(QoS) criteria for example jitter, high data rates, and latency 

ultra-low (Zafeiropoulos et. al. 2020; Zahariadis, Voulkidis, 

Karkazis & Trakadas, 2017). 

AI, in this setting, is crucial to IIoT-enabled cybersecurity 

linked manufacturing setting, since it allows for precise threat 

detection and mitigation (Chatzigiannakis et. al. 2019; Fotiadou 

et. al. 2020; Lagutin et. al. 2020; Lagutin et. al. 2019). 

Simultaneously, presenting AI will result in a more safer and 

productive working environment, releasing routine procedures 

of human employees and allowing intelligent robots and 

machineries to do reasoning, heavy tasks, decision-making, and 

permitting human employees to concentrate on creativity (Yao, 

Zhou, Zhang, & Bor, 2017; Shin & Park, 2019). However, there 

are a few challenges and limitations to adopting and integrating 

AI-based innovation in the manufacturing domain that need to 

be appropriately addressed so as to realize its complete 

possibility without risking humans’ indispensable role or 

critical procedures and data’s security (Bresniker et. al. 2019; 

Zeadally, Adi, Baig & Khan, 2020). Researchers are familiar 
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with the phrase "data," as research into data management is still 

blooming with innovative technology. 

Because of ever-increasing users’ and services’ availability, 

data amount has increased dramatically in recent years. The 

Internet of Things is explained by data vast volume created by 

actuators and sensors in a real-time context (IoT). IoT data 

collection architecture incorporates a variety of sources such as 

web resources, software applications, and other sources. All of 

these sources generate large amounts of data, necessitating a 

huge system of storage. Virtual sensors, as well as physical 

sensors, have just been advanced and are centered on data 

fusion mix from physical sensors and are employed in the cloud 

setting. The acquired data is referred to as sensor raw data, and 

it is processed, stored, and collected into meaningful info that 

aids in the resolution of data-related issues. In order to handle 

enormous amounts of heterogeneous data, sensor wireless 

networks are used for Internet of Things actualization, and 

sensor networks of large wireless scale are utilized for data 

management in computing cloud environments. The Internet of 

Things (IoT) is used widely in health care, manufacturing, 

industry, smart homes, and smart cities, among other areas. 

The data is collected in the IoT environment by placing the 

sensors in a structured way in a specific area. It collects data in 

accordance with the defined service for devices of IoT. 

However, these sensors have constraints for example energy 

management, distance, and sensitivity, they gather data from 

the setting and send it to a common central node for analysis, 

after which the essential info is transferred to additional nodes. 

Because several devices of IoT send data bundles to a main 

server or central node, a unit storage is required to enhance and 

store the data before sending it to the cloud. The user is 

encouraged to have proper understanding of the sensor data so 

as to shun inaccurate data occurrence. The advancement of data 

gathering devices and applications enhances people's lives 

while also rapidly increasing the amount of data available. As a 

result, it is critical to handle, store, and analyze such data via 

the internet of things, according to a present study trend. 

Big data, on the other hand, is an important process that 

processes acquired data and converts it into useful information 

in order to gain process knowledge. Big data is a vast volume, 

diversity, and velocity of information asset that necessitates 

information efficient system processing to enhance the 

automated process of decision-making. Analytics of big data is 

data analysis extension to analyze and handle real-time data 

huge amounts with many architectures. It serves as a boundary, 

providing support regarding forecasting, productivity, and 

innovation for the exponentially rising data in order to acquire 

the required solutions. Because data becomes outdated in a little 

period of time, it is critical to deal with it on a good platform 

while it is lively. Management of big data is a difficult 

undertaking since it necessitates an effective management data 

strategy, yet it is still necessary for some applications such as 

forecasting of weather. Traditional systems have difficulty 

processing enormous amounts of data, making it difficult to 

analyze and process. Regarding time and cost roles, the 

database management system lags behind while managing 

massive data. 

When opposed to traditional data sets, big data is unusual in 

the storage process since the information is stored each byte, 

requiring the complete dataset to be analyzed in order to retrieve 

the required information. The raw data is transformed into 

useful data in the form of volumes that can be recognized as 

patterns. Big data analytics include efficient operations, smart 

decision-making, product development, and service system of 

well-functioning. Data cleansing, data capturing, data 

processing, data association, data distributing, data indexing, 

data moving, data mining, data displaying, and data analyzing 

are all key elements of big data processing, which are frequently 

utilized for data processing of real-time. The analysis aids both 

academic and technical users in gaining a previous data 

understanding. As stated in the design analysis, it converts data 

into features and predicts data into appropriate applications. 

Volume, diversity, and velocity are three essential concepts that 

are commonly mentioned in big data research. 

In which the variety indicates data sources’ heterogeneous 

nature for example machines, sensors, and extra applications of 

data generating, while the volume signifies the rising data 

nature regarding bytes. Velocity refers to the degree upon 

which data is produced and defines how well the generated data 

meets the requirements. Other important big data 

characteristics, as well as velocity, diversity, and volume, are 

veracity, which ensures that data is transferred authentically 

from multiple sites and regions, and value, which is applied to 

signify stored data significance and its merit computing. In a 

big data architecture, collected data is kept and processed, and 

the time period for storing and processing the data is set 

regarding validity. Equally, in a big data environment, the 

information flow is dynamic because most applications are used 

to handle real-time acquired data, so it's important to talk about 

how the data varies regarding variability. Another important big 

data feature is venue, which specifies the particular area where 

data is kept and retrieved. These locations are commonly 

referred to as data centers. 

Because raw data is meaningless until it is correctly 

analyzed, it is necessary to explain data nature regarding 

vagueness, and then vocabulary is applied to explain other 

notations of grammar and data readability. All of these major 

aspects work together to help you handle your data more 

effectively in big data analysis. The four categories of big data 

analytics are predictive analysis, descriptive analysis, 

prescriptive analysis, and diagnostic analysis. In this case, 

descriptive analysis is a first-stage processing data procedure 

that specifies past data in order to establish the structure of data. 

Descriptive analysis organizes data using appropriate data 

mining approaches and helps the extraction of relevant 

information from the identified patterns. Future predictions 

based on probability could be conceivable in descriptive 

analysis, giving the user a clear picture of what will happen 

next. In predictive analysis case, existing data is applied to 

forecast future events. It's akin to a model forecasting, which 

employs numerous techniques of data mining, as well as 

artificial intelligence, to extract vital information from current 

and historical data. 
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In diagnostic analysis, the problems’ root cause is determined 

in order to gather the necessary information about the scheme's 

behavior. Constant efforts are made in diagnostic analysis to 

identify faults so that they can be prevented or corrected in the 

future, improving efficiency of data handling in environment of 

big data. When dealing with large amounts of data, prescriptive 

analysis is used to make decisions centered on raw data study. 

This prescriptive analysis offers a healthier answer to the 

challenges in management of big data by offering crucial 

historical data and prediction specifics using a predictive 

analysis method. Figure 1 portrays analysis of big data 

classifications. 

 
Fig. 1.  Types of Big Data analysis 

2. Motivation 

The necessity for system of IIoT-based that monitors 

production act and security is the driving force for this research. 

This system, which allows for important processes’ digitization 

in vital infrastructures such as plants of manufacturing, must be 

dependable, secure, privacy-preserving, and resilient. Together, 

it must make it easier for humans and machines to engage, as 

well as encourage peer-to-peer collaboration. It should also 

gather, store, and analyze data for manufacturing organizations 

to improve. AI, in this setting has the ability to efficiently meet 

numerous of these requests, allowing it to be integrated into the 

fabric of a reliable IIoT Big data system. 

3. Literature Review 

The IoT's challenges and issues this section examines the big 

data environment by examining current models of research. Big 

data IoT issues arise first and foremost from the huge amount 

of data collected in the environment of IoT via radio devices 

frequency and sensors (Cai et.al. 2017). Because the Internet of 

Things has hundreds of devices that generate data on their own, 

the amount of data collected rises. This large amount of data 

causes bandwidth challenges when storing, processing, and 

transferring in a real-time context. To process the information, 

a large quantity of bandwidth is necessary, which is not always 

reliable. Similarly, concerns relating to data storage necessitate 

a high storage space amount for data management and ensure 

that recovery and backup of vital data is possible in the future 

(Ngu et. al. 2017) In contrast to storage, time processing will 

rise when a big data amount is processed in real time via the 

system, potentially affecting the system's service quality. Data 

gathering in an IoT system is not the same as it is in other 

systems (Pandian et. al. 2019). Diverse sensors’ types are used 

in design IoT dependent on the application, which offers 

dissimilar data forms, which is regarded a tough procedure in 

big data IoT. 

Because the data is unstructured, organized, and semi-

structured (Condry et al. 2016), the system must store it and 

gather it in an individual location storage, which takes up 

additional capacity. Nearly 75% of the data collected cannot be 

handled using traditional methods, necessitating the 

development of an effective methodology to process both 

organized and unstructured data. Another essential problem in 

big data IoT (Bashar et al. 2019) is data transmission speed, 

which defines directly velocity, which is one main key features 

in analysis of big data. In a real-time context, processing data 

to extract vital information necessitates data analytics high-

speed, which is challenging to do (Yi, Xu & Xu, 2019). Another 

problem with IoT big data is time series (Bestak & Smys, 2019) 

for effective data analysis. Sensors in an environment of IoT are 

applied to gather data at specific period intervals for specific 

applications, and the collected data can be meaningless at times 

if there is a change. As a result, the major concerns must be 

addressed using data recorded (An et. al. 2019). One of the 

challenges with IoT Big data is that most systems have 

difficulty with time data sequence processing in health care 

applications (Chandy et. al. 2019; Smys, 2019). 

Finally, in IoT big data, security and privacy considerations 

are a significant challenge (Wang et. al. 2018). The data from 

the sensors to the station base is handled over a wireless 

connection, which poses security and privacy concerns 

(Metzger et. al. 2019). A network potential being exposed to 

attacks that compromise data security. The information is stolen 

from devices of IoT either actually or whereas the transmission 

is in transit. Because devices of IoT lack self-defense security 

procedures, controlling privacy and security in IoT large data is 

a serious concern. While privacy must be carefully considered, 

authentication must also be taken into account (Wu et. al. 2019). 

In the IoT big data world, offering information access is a 

difficult task. The approach proposed is meant to construct a 

healthier processing information system in the big data IoT 

environment, taking into account these constraints (El-Mougy, 

Ibnkahla & Al-Shiab, 2019). According to the results of the 

poll, present technologies have challenges with data extraction 

and processing, as well as security matters. The model proposed 

is discussed and built in the next part based on the difficulties. 

A. Intelligent manufacturing concept 

According to Penn et. al., research’s intelligent 

manufacturing will be produced in the future; every product 

will be entities of some algorithm kind, specifically "pan-robot" 

period (Preuveneers et al. 2017). It is self-evident that 

developing intelligent manufacturing is critical for the industry 

of Chinese manufacturing and even the economy of China. 

Industry of manufacturing is slowly becoming digitized, and 

additional data is being collected on similar platform of data 

due to manufacturing and technology information integration 

(Penn, Pennerstorfer, & Jungbauer 2018). The industrial 

business has become fully sophisticated thanks to data analysis 

(Cardin et al. 2017). The platform system conducts analysis of 

data to develop value and knowledge centered on 

manufacturing digitalization and the massive generated data by 

“Internet+” (Lim et al. 2018). Intelligent manufacturing, 

according to Guo et al., will encourage the development of 
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integrated vertically models of business, intelligent platform 

models of business, and integrated horizontally models of 

business (Guo, Li, and Pang 2018). Intelligent manufacturing 

would rebuild future models of business with the platform at 

their center, which would not help only manufacturers reduce 

costs and increase productivity, but also allow businesses to 

rebuild models of business and rethink positioning value 

(Mohtar 2017). 

Learning machine can be used to systems of intelligent 

manufacturing, according to Ozay et al. (2017). Building an 

individual system with learning machine roles is one option. 

Additional option is to create an enterprise-level platform of 

learning machine that will deliver machine learning capabilities 

and services to other enterprise systems. As said by Ozay et al. 

(2017), the data source layer, acquisition data layer, analysis 

data layer, application layer, and storage data layer constitute 

the platform system of latter learning machine architecture. As 

said by Klaine et al. (2017), pattern recognition and expert 

systems technologies have been widely used and implemented 

in numerous disciplines, including robotics, language natural 

understanding, and visual recognition. According to Giusti et 

al. (2017), the unique system of expert describes the 

experimental and experience data of professional business in a 

regular manner system, and then incorporate algorithm 

programming of mathematics to discover problem optimal 

answer consistent with the conditions given, for example the 

scheduling dynamic in programming multi-objective, whereas 

the recognition pattern is centered on the set features, and model 

identification is specified by setting parameter technique to 

attain the selective purpose, concentrating on resolving problem 

of sensing of small data variation and targets of individual 

business, for example signal production processing, statistical 

control process, and image recognition.  

Learning machine can apply algorithms standard to study 

samples history, extract and select characteristics, and 

continuously optimize and build models, increasing the original 

system's capability to learn independently, which solves the 

uncertain business in the production process and improves the 

system's intelligence level (Ge et al. 2017). 

According to Wang et al. (2017), technology of Internet of 

Things introduction to manufacturing intelligent systems, 

according to Wang et al., would encourage business models’ 

intelligent manufacturing development. Yang et al. highlighted 

artificial intelligence's challenges in intelligent manufacturing 

and provided solutions (Yang et al. 2018). The advantages of 

small-scale intelligent manufacturing systems are discussed by 

Day et al., who point out technology of intelligent 

manufacturing is built on communication information 

technology and technology manufacturing (Day 2018). 

According to Lv et al. (2017), full people and machines 

separation is a trend in technological advancement. 

Manufacturers need to increase the model competitiveness, 

flexibility, timely, and sustainability responsiveness of their 

business intelligent manufacturing via modern technology and 

creative management techniques to thrive in an ever-changing 

and highly competitive market (Lv & Lin 2017). The majority 

of intelligent manufacturing literature now focuses on three 

aspects: overarching idea description, implementation, and 

system design, development, and benefits. It's hard to find study 

on systems of intelligent manufacturing centered on learning 

machine for pertinent evaluation and analysis, which is 

precisely what manufacturing companies need right now. As a 

result, based on international and domestic research, this paper 

proposes a method of evaluation for business model of 

intelligent manufacturing so that firms may clearly grasp their 

current state and deficiencies in order to make next-step 

judgments. 

B. Contribution 

The RAMI 4.0 (German ZVEI Electronic and Electrical 

Association of Manufacturers, Germany, Frankfurt) is a 

manufacturing systems’ blueprint that was created to generate 

a single vision and develop a common understanding among all 

stakeholders. Layers are well-defined and structured 

(Integration, Asset, Information, Communication, Business, 

and Functional layers), RAMI 4.0 is architecture reference of 

service-oriented that spans the entire product life cycle, 

including all aspects and IT (information technology) 

constituents (from product to linked world) (from design to 

maintenance). About 3 sorts of extensions were propose to 

architecture RAMI 4.0 to overcome the aforementioned issues 

associated with AI implementation in smart manufacturing. 

First, every current layer of RAMI 4.0 will be enhanced, 

replicating the reality that AI is a cross-cutting issue that affects 

every aspect of systems of IT manufacturing. Certainly, AI-

assisted manufacturing necessitates information modeling and 

new data processing techniques, and AI will enable additional 

automated and autonomous intelligence business. Second, 

human-in-the-loop layer was designed that offers techniques, 

tools, and models to aid human decision-making by facilitating 

collaboration between virtual AI-based entities and human 

inside a site of manufacturing. Third, a federation layer is 

established, which integrates unique concepts like AI-on-

demand and federated secure learning schemes to facilitate the 

flow of knowledge across manufacturing locations regarding AI 

algorithms, training models, results of threat analysis, best 

practices, and deployment recipes. Finally, the rising 

interoperability need at many manufacturing ecosystem levels 

is one of the major obstacles to the introduction and adoption of 

AI principles in IT production systems (Zeid et. al. 2019). In 

this context, the use of existing criteria, for example Open 

Platform Communications United Architecture (OPC-UA) for 

service-oriented industrial communication infrastructure and 

Automation Markup Language (AutomationML) for semantic 

data exchange provide present ways for identifying the 

necessary interoperability and connectivity for co-operation 

intelligent in smart factories (Rosendahl et. al. 2018). As a 

result, it's critical to integrate and reuse with a variety of 

existing and emerging technologies. 

C. Communication and Information Intelligence 

The Information and Communication Intelligence layers' 

primary role is to conduct every necessary activity on datasets 

factory-wide so that the upper levels' constituents can make 
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results of AI algorithms decisions running on batch datasets or 

top of such processed streams of data. The lower layer of our 

architectural approach processes non-labeled (raw) data created 

by devices for manufacturing accompanied by all additional 

necessary information (for example, results quality control data, 

data logs, and so on) and suitably transforms it before 

forwarding to the upper layers. The goal is to create an 

expanded metadata library that covers a wide range of data 

generated during the manufacturing process. This layer also 

includes key functionality for deploying algorithms of AI closer 

to the sensor (computing edge), as well as detecting changes in 

dataset statistics that indicate the need to retrain algorithms. 

This layer provides both data logistics and shaping as well as 

information modeling functionalities to enable the two key 

kinds of AI algorithms (data-driven machine learning (Zhang, 

Yang, & Wang, 2019) and knowledge-based models (Chen & 

Zhao, 2006). Finally, analysis threat constituent watches every 

data flow among services in real time. Individual primary 

constituents contained in this layer's functionality is described 

below. Data pipelines AI-enabled orchestrator constituent 

facilitates the deployment and creation of processing data 

pipelines with 2 main goals: I the constituent must enable the 

creation and deployment of pipelines that combine common 

processing data responsibilities (feature reduction, feature 

conversion, data fusion and anonymization, annotation and 

labeling, data cleaning, and so on) with models of AI (applied 

in the upper layers’ services). In this regard, the constituent 

offers mechanisms for quickly constructing these pipelines, in 

addition to out-of-the-box set and extendable processors of data 

to make handling of data simpler and more effective for the 

most data prevalent in the factory; (ii) the constituent must be 

able to deploy pipelines and orchestrate the many frameworks 

and components that are applied, comprising the models of AI 

that are made available and built through containers. To 

accomplish so, the constituent must be capable to orchestrate 

the various modules and frameworks required to perform the 

operations on infrastructure distributed (public cloud, edge 

cloud, edge device). The long-term edge-based learning 

component aids in models of deep-learning development that 

should be used on devices edge as data-processing pipelines 

part (Ferrari et. al. 2019). For latency-sensitive circumstances 

or/and once bandwidth upstream is limited, such as processing 

video and audio from light processing ranging and detection 

(LIDAR) data or AR (augmented reality) headset on a robot 

mobile, edge-based learning is necessary. The component will 

provide resource-efficient neural network topologies that can be 

trained minus a substantial amount of input labelled (Hubara et. 

al. 2017). 

Furthermore, because future factories will operate in 

changing constantly contexts, the constituent will back 

algorithms of AI that are not learned when on an individual 

huge data batch nonetheless are often re-trained whereas in use. 

The knowledge graph of intra-manufacturing is the platform's 

chief hub for management of knowledge. To enable knowledge 

representation and linkage, this module expands and combines 

already models accessible, both domain-independent and 

domain-specific. Furthermore, it employs and expands graph 

analytics and cutting-edge reasoning techniques for entity 

consolidation and link prediction in order to identify 

correlations between data from various modules and layers. The 

intelligence threat manager uses the curated and collected 

datasets, as well as algorithms of AI, to do analysis of threat to 

only not forecast possible cybersecurity issues, nonetheless also 

to mitigate and manage them in a suitable means. This 

constituent offers an answer to the problems with present 

signature-based techniques “(that can efficiently detect existing 

cyber-attacks, but are inherently incapable of discovering zero-

day attacks where there is no predefined rule)” and methods 

centered on anomalies “(that can detect known and zero-day 

attacks with some limitations of false-positive rates, but cannot 

detect attack types such as distributed denial of service)”. 

D. Functional and Business Intelligence 

This layer contains components and services that model the 

behavior and status of entire assets and manufacturing process 

operations (comprising humans). Information models and 

processing data abilities from the bottom levels are used to 

create these models, which are produced utilizing AI algorithms 

and trained models. Other AI-enhanced services will be created 

on top of these, either in HITL operations or for automatic 

optimization business goal. The next sections detail the 

constituents that make up this layer. Behavior models of 

component-oriented are twins digital with particular 

constituent’s behavioral models, which move away from the 

conventional system-wide behavioral models. Each component 

not only digitally records the state of assets and properties 

through the asset administration shell (thus giving a digital 

twin), but also models state transitions, such as using a finite 

state machine. This enables us to reflect the current state of the 

manufacturing process in digital twins, including the logic that 

governs the transition to subsequent stages or states. Learning 

behavior on a component-by-component basis and assembling 

a complete model from them has the advantage that if one 

component fails, just the related model needs to be retrained, 

leaving the system-wide behavior model intact. If a component 

is replaced, the time it takes to adapt the entire behavior model 

is reduced. Another benefit of this method is that component-

based models are more likely to be reusable in different 

contexts, allowing for collaborative learning and component 

monetization. The basic goal of digital human/context models 

is to learn and model human processes, strategies, and 

judgments as part of cooperative tasks in order to produce 

efficient human-centric intelligent control systems. In order to 

address complicated circumstances defined by varying levels of 

uncertainty, environmental and context elements are combined 

with the derived operational models. There are two types of 

models created: classification models that can recognize 

situations and models that can predict human behaviors and 

decisions in a workflow “(e.g., short-term future movements of 

human operators in the shop-floor considering current situation, 

typical decisions for a given event)”. In this way, more intuitive 

user interfaces may be created because the AI system 

anticipates how the human would interact while maintaining 

control. This layer also includes application-specific services 
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for business objective optimization. Section 6 discusses the 

platform's potential applications. 

E. Human in the Loop 

This layer contains cutting-edge technologies for efficient 

and intuitive cooperation among AI systems, machines, and 

humans, permitting them to leverage each other's strengths for 

extra cooperative effectiveness and intuitive execution of task 

and making of decision. By moving past typical mechanisms 

interaction between IT systems and humans on the floor shop, 

for example command-line computer screens, buttons, and 

pendant consoles, the multichannel and context-aware 

interaction manager promotes innovation. A good interface user 

is intuitive and does not necessitate the training of human 

operators in certain structures or actions. Voice commands 

could be one answer, however due to machine noise, AI 

systems on the shop floor have a hard time catching and 

processing voice commands. In its place, this constituent 

enables for many simultaneous channels of input (speech, facial 

expressions, and gestures) to offer input redundancy, 

overcoming individual channels’ diminished robustness, such 

as that caused by changeable lighting or noise on the 

manufacturing floor. Context information, such as the 

operator's location or current production parameters, is used to 

advance human-machine interaction’s spontaneity (Liu et. al. 

2018). The decision support intelligent system (DSIS) will 

permit humans to make logical decisions at the business or 

strategic level, such as maximizing the performance of a 

manufacturing system, based on expert knowledge, 

considerable experience, empirical data, and context 

information. Traditional decision systems support (DSSs) that 

are commonly utilized in the manufacturing area will be 

enhanced with unique abilities, such as threat intelligence 

models or digital twins, in our suggested methodology. The 

combination of digital twins and IDSSs holds a lot of promise: 

the former lack knowledge of business enterprise limits and 

goals, whereas the final necessitate advanced and holistic 

simulation models to make references. As a result, enhanced 

data analysis tools will enable objective and evidence-based 

insights to be relied on. 

F. Federated Intelligence 

The Federated Learning constituent seeks to solve data 

challenge collecting for training or feeding models of AI 

whereas ensuring that the data is confidential and owned. Since 

they directly relate to aspects of the manufacturing process, 

volumes, product qualities, and so on, most (if not all) data and 

information in manufacturing is proprietary. This component 

uses private set intersection (PSI) technologies (Pinkas, 

Schneider, & Zohner, 2018) to enable 2 parties with private 

information set to recognize their information sets’ intersection 

without enlightening any info other than the intersection, 

whereas open-source frameworks like TensorFlow Federated 

support decentralized AI models (Lim et. al. 2020). The inter-

manufacturing knowledge exchange acts as a conduit for 

information interchange between different manufacturing sites 

or processes. Instead of giving access open to the local 

repository knowledge, this constituent incorporates a query 

engine to handle outside demands, as there is a requirement to 

limit what information is published and exchanged. These 

query engines also make it possible to implement a federated 

query-processing method across different sites. 

G. Authorization and Security 

The platform proposed likewise handles data and 

information sharing security and permission requirements. The 

signcryption schemes component, which is centered on novel 

primitives cryptographic such policy ciphertext encryption of 

attribute-based (CP-ABE) systems, provides an effective and 

scalable approach to this aim. The technique encrypts the data 

using a policy of access control centered on attributes set and 

ensures that the keys of user are linked to their descriptive 

qualities. Consequently, the data owner has thorough control 

over the control access rules used for data encryption, knowing 

that a user can only decrypt the data only if their secret key 

equals the policy access used for data encryption. As a result of 

this unique technique (Taha, Talhi, & Ould-Slimane, 2019), this 

system significantly minimizes the effort administrative 

required for main administration and distribution whereas 

assuring end-to-end data security. CP-ABE can be integrated 

with encryption of symmetric techniques (for instance, AES, 

Advanced Encryption Standard) to meet the needs of shop floor 

devices regarding resources processing and speed to 

encryption. This ensures the essential trade-off between 

performance and information granular protection. 

H. Cybersecurity for Artificial Intelligence (AI) 

Numerous constituents of manufacturing system of IoT-

based are integrated with AI in the framework provided. 

However, this raises additional worries about the security and 

reliability of AI systems in general. Input assaults and 

poisoning attacks are two types of artificial intelligence attacks 

that target the AI algorithm. The former entails tampering with 

the AI system's input in the operation stage so that it produces 

incorrect results. Because input attacks do not require a 

controlled AI system, they are relatively simple to launch and 

succeed. Poisoning attacks, on the other hand, are caused by the 

corruption of the AI model's construction process. In this 

situation, the model is fed erroneous or mislabeled data in the 

training stage in order to control the process of learning. This 

attack type can likewise be used against learning federated; in 

this situation, algorithm or modified data from a federation 

member can cause the global model to be corrupted. The key 

feature of trustworthy AI is the protection against adversarial 

attacks, which has recently gained a lot of attention (Comiter, 

2019). Traditional cybersecurity policies and mechanisms can 

be utilized as a beginning point to defend AI systems. In this 

regard, the suggested architecture's security-related 

components, which provide confidentiality, integrity, and threat 

detection, can provide a first protection degree. Though, 

delivering total AI cybersecurity, particularly in the case of 

IIoT, will necessitate additional modifications to address these 

AI systems’ inherent vulnerabilities, which will be left to future 

study.  
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4. Proposed Work 

By constructing an efficient industrial monitoring system for 

effective information processing, the approach proposed for big 

data IoT is examined. The process is separated in 3 stages: 

decision making, processing information for example analysis 

and classification, and data aggregation and collection. 

IoT is used widely in a variety of science and engineering 

applications, and it has recently been used to improve industrial 

systems. Cloud computing supports a variety of services and 

applications, which are further enhanced by combining IoT 

with cloud. Significant elements in applications of 

manufacturing, for example data remote processing, necessitate 

a dependability high level. When using computing cloud for 

this setting, the cloud provides improved pre-processing data, 

ensuring a clean forwarding process that enhances the 

productivity of health care apps in a novel way. In production 

monitoring applications that collect data and information, a 

variety of sensors are typically used. The data is collected and 

sent to the network layer of IoT sensor, which performs 

encryption, data collecting, compression, and aggregation. This 

data collection procedure gathers information about a person's 

physical status and their surroundings. Data is acquired from 

sensor devices located in manufacturing firms, the 

environment, and the neighborhood through wireless networks 

based on the environment, manufacturing center, and location. 

It's a complicated process to collect and provide sensitive data 

in the accumulation model. For IoT-based manufacturing 

applications that share data across a wireless network, an 

efficient data protection operation is required. Through data 

hierarchical compression and encryption, the suggested 

solution reduces data confidentiality concerns. All of the 

information that has to be communicated, as well as the secret 

key, is shared among the device nodes and user in this 

procedure. If the nodes sensing satisfy the established enquiry 

conditions, the data is encrypted as text cipher. Sensing nodes 

employ encryption of data to share data with the base station 

using a secret key, and message compressed is sent to the node 

aggregate using a similar encryption key.  

If the node aggregate is the way only for data sharing with 

the station base, the transfer data procedure is started; 

otherwise, nodes aggregate share the data collected with other 

nodes aggregate, and that node is regarded a mediator. The 

mediator facilitates information exchange and data aggregation 

with its data so that the suggested process can achieve the data 

difference. Normalization, information analysis, extraction, 

classification, and filtration are all part of data pre-processing. 

Information is exchanged as aggregated and encrypted 

messages from every node aggregate from the base station to 

the cloud layer. Data normalization is a technique for 

standardizing aggregate data. For normalization efficiency in an 

environment of IoT, the approach proposed utilizes the max-

max normalization technique. The model proposed flow 

process is in detail depicted in Figure 2. 

Data filtration is a technique for removing noise and 

undesired elements from gathered data. The proposed solution 

makes use of a kalman filer to improve the noise reduction 

process. It separates the significant from the unimportant noises 

while also increasing the system's data processing speed. The 

final step in a manufacturing application is data analysis. Once 

the filtered data has been received, data analysis requires an in-

depth core analysis. The nodes master partition the data high-

speed in diverse data fixed-size packets to manage huge data in 

applications of manufacturing at high speeds. As a master node, 

these packets data are separated in data fixed-size, which is then 

processed in slave nodes at the same time. The proposed 

approach makes use of Hadoop's distributed file system to 

disseminate data packets to all slave nodes (DFS). If above 1 

packet needs processing by the nodes slave, the function map is 

applied to process them. However, Hadoop has limits when 

dealing with data real-time, thus the approach proposed relies 

on Apache Kafka, a distributed message of high-throughput 

system. The relevant parameters are retrieved using Apache 

Kafka, and monitoring of real-time is advanced in the approach 

suggested based on the extracted features and data 

categorization findings. The purpose of such a manufacturing 

system is to limit risks of production and to detect anomalous 

changes quickly. As a result, the IoT-based factory monitoring 

system will increase the use of right processes, accurate 

resources, quality products, and efficient manufacturing time. 

 

 
Fig. 2.  Proposed Information processing architecture  

(Adopted from (Raj, 2020)) 

5. Result and Discussion 

The model proposed is verified experimentally in simulation 

by arraying many manufacturing sensors over a 1000x1000m 

area, with the experimentation being done in Python. Sinks and 

aggregate nodes that perform encryption, compression, 

transmission, decryption, and decompression operations using 

the described algorithms in the work proposed section make up 

the network. Parameters including cost functions regarding 

storage and transmission, accuracy, f-measure, specificity, and 

sensitivity are likened to current clustering hierarchical and 

neural network of back propagation models to validate the 

proposed work's performance. The simulation parameters 

utilized for the suggested work experimentation are listed in 

Table 1. 

Figures 3 and 4 provide a comparison of the suggested 

model's specificity and sensitivity to the standard model. It has 

been discovered that the proposed information processing 

system outperforms other algorithms regarding specificity and 

sensitivity. The performance is graded on a scale of 5, 10, 15, 

20, 25, 30 centered on the actions and requests. The approach 



R. Essah et al.                                                     International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 8, AUGUST 2021 175 

proposed achieves well performance on ninety-six percent 

average specificity, which is two percent higher than the neural 

network of back propagation model and four percent higher 

than the clustering hierarchical method, thanks to the online and 

offline operations enabled by Hadoop and Apache. The 

proposed approach achieves an average of 95 percent 

sensitivity, as shown in figure 3. 

 
Table 1 

Parameters of Simulation 

Parameter Value 

Network area 1000x1000m 

Number of devices 40 

Gateways 6 

Physical memory 600Mb 

Capacity 1Gb 

Request per second 10 

Bandwidth 1Mbps 

 

 
Fig. 3.  Classification efficiency- Specificity 

 

 
Fig. 4.  Classification efficiency- Sensitivity 

 

The comparison of f-measure for entire 3 data processing 

models actions and requests is shown in Figure 5. When 

compared to existing methods, the suggested model achieves a 

higher f-measure. The proposed approach's f-measure average 

value is ninety-six percent, which is significantly superior than 

the model of clustering hierarchical. 

 
Fig. 5.  F-measure comparison 

 

 
Fig. 6.  Accuracy comparison 

 

Figure 6 shows how the suggested model compares to the 

hierarchical and back propagation models in terms of accuracy. 

The accuracy parameter is determined by the amount of 

information extracted from aggregate nodes’ performance and 

raw data. When compared to other models, the suggested model 

has a classification accuracy of 97 percent on average. 

6. Conclusion 

For optimal handling of massive data in an IoT environment, 

the study work provided a new processing information in IoT 

centered factory system of monitoring. Data management is a 

critical and necessary activity in IoT systems, and present 

solutions of big data-centered are sufficient to satisfy every 

requirement. In the IoT Big data context, it's critical to increase 

data handling performance because most systems are solely 

designed for real-time data collecting. The proposed strategy 

utilizes Hadoop and Apache Kafka to meet the need for real-

time data collection as well as offline processing. In comparison 

to the clustering model of traditional hierarchical and the neural 

network of back propagation model, the approach proposed 

performs well in data management and information extraction. 

The suggested model achieves a 97 percent accuracy, which is 

a significant increase in data processing in the Big data IoT 

context. The research's next focus could be on employing 

optimization models to improve performance. 
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